
Interpretable Neural Subgraph Matching for Graph Retrieval
(Appendix)

A Additional related work
Our work is closely related to the graph matching problems in computer vision, combinatorial approaches in graph and subgraph
matching, and graph neural networks. We briefly review them in the following sections.

A.1 Graph matching in computer vision
The closely related problem of deep graph matching has been heavily investigated by the computer vision community. However,
their existing neural matching models generally require explicit supervision of node level ground truth alignment. This is used
for computing a variety of losses, such as displacement loss (Zanfir and Sminchisescu 2018), permutation loss (Wang, Yan, and
Yang 2019; Tan et al. 2021; Zhao, Tu, and Xu 2021; Fey et al. 2020) or Hungarian attention loss (Yu et al. 2019). Such domain
specific, fine grained annotation is generally difficult to acquire. It is our belief that, a neural graph retrieval system should have
the capacity to be trained using relevance judgements, similar to classic Information Retrieval systems. Therefore, we do not
consider such high-supervision approaches among our baselines.

A.2 Combinatorial approaches in graph and subgraph matching
Combinatorial optimization approaches for graph and subgraph matching are widely studied in the literature. The complexity of
graph isomorphism is an open problem, with a well-known quasipolynomial time algorithm (Babai 2016). On the other hand, the
subgraph isomorphism problem has been long known to be NP-complete (Cook 1971). The graph matching problem can also
be formulated as a quadratic assignment problem (QAP) which is well known to be NP-complete (Garey and Johnson 1979).
Classical combinatorial approaches for exact matching are based on backtracking, such as Ullman’s Algorithm (Ullmann 1976)
and VF2 (Cordella et al. 2004). These suffer from exponential time and memory requirements. Additionally, such methods are
unable to learn from any given data distribution. Rather than test for (sub)graph isomorphism in a given pair of graphs, our focus
is on ranking a number of corpus graphs in terms of how close they are to having subgraphs isomorphic to the query graph.

A.3 Graph representation learning
In recent years, there have been a series of formulations (Gilmer et al. 2017; Hamilton, Ying, and Leskovec 2017; Kipf and
Welling 2016; Veličković et al. 2017; Perozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 2016; Zhang and Chen 2018)
which aim to distill sparse, high dimensional neighborhood information into denser, low dimensional compact representation
vectors. They are often used to compute similarity between graphs in vector spaces (Li et al. 2019; Bai et al. 2019). Apart from
graph matching, they are also used for a wide variety of downstream applications, e.g., link prediction (Zhang and Chen 2018),
node classification (Grover and Leskovec 2016), etc.

B Connection between the optimization (6) and the linear assignment problem (9)
The optimization minP

∑
i,j

[(
Rq − PRc

)
+

]
i,j

is equivalent to the following optimization problem.

min
P ,ζ≥0

∑

i,j

ζi,j subject to, ζi,j ≥ (Rq − PRc)i,j (22)

Given the Lagrangian multiplier matrices C ≥ 0 andD ≥ 0, the dual of the above optimization problem (22) becomes:

max
Ci,j≥0,D≥0

min
P ,ζ≥0

∑

i,j

ζi,j +Ci,j(Rq − PRc − ζ)i,j −Di,jζi,j (23)

Differentiating w.r.t ζi,j , we have
1−Ci,j −Di,j = 0⇒ Ci,j +Di,j = 1⇒ Ci,j ∈ [0, 1] sinceDi,j ≥ 0 (24)

Thus we have,

max
C∈[0,1]

min
P

∑

i,j

Ci,j(Rq − PRc)i,j = max
C∈[0,1]

min
P

Trace
[
C>
(
Rq − PRc

)]
(25)

which is a linear assignment problem.

C Dataset preparation
We gather six datasets from the repository of graphs maintained by TUDatasets (Morris et al. 2020). Their characteristics are
summarized in Table 7.

For our subgraph matching task, we sample the query and corpus graphs from each of the TUDataset graphs using a breadth
first search (BFS) based technique as proposed in Lou et al. (2020). To sample any graph G, we first sample a node u and then
perform a random BFS traversal centered around that u till |V | ∈ [7, 15] nodes have been selected. We extract the subgraph
induced by V and set it as G. Having independently sampled all query and corpus graphs using this procedure, we obtain the
ground truth subgraph isomorphism relevance labels, by using the Networkx implementation of the VF2 algorithm (Hagberg,
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Swart, and S Chult 2008; Lou et al. 2020). Table 8 summarizes the statistics of these sampled datasets, which are used for our
experiments. Each of these datasets in Table 8 contains 100 query graphs and 800 corpus graphs. Out of the 80,000 query corpus
pairs thus generated, we find that the pos-to-neg relevance ratio takes values between 0.21:1 to 0.26:1 across the different datasets.
For the experiments reported in main, we have split the 100 query graphs into 60% training, 15% validation and 25% test folds.

Dataset No. of graphs Avg. no of nodes Avg no. of edges
PTC-FM 349 14.11 14.48
PTC-FR 351 14.56 15.00
PTC-MM 336 13.97 14.32
PTC-MR 344 14.29 14.69
AIDS 2000 15.69 16.20
MUTAG 188 17.93 19.79

Table 7: Statistics of the raw datasets collected from TUDatasets (Morris et al. 2020).

Dataset Avg. |Vq| Avg. |Eq| Avg. |Vc| Avg. |Ec| | {y(Gq, Gc) = 1} | | {y(Gq, Gc) = −1} | |{y(Gq,Gc)=1}|
|{y(Gq,Gc)=−1}|

PTC-FM 8.96 8.45 13.24 13.20 14790 65210 0.23
PTC-FR 9.16 8.68 13.32 13.37 13975 66025 0.21
PTC-MM 9.10 8.55 13.29 13.22 15939 64061 0.25
PTC-MR 9.04 8.58 13.32 13.30 14231 65769 0.22
MUTAG 8.87 8.97 13.34 13.76 16420 63580 0.26
AIDS 8.40 7.89 13.12 13.04 13901 66099 0.21

Table 8: Statistics of the sampled subgraphs used in our experiments.

D Implementation details for all methods
D.1 Implementation details of ISONET

ISONET has three modules: (1) The neural alignment module Fθ as described in Eq. (10), (2) the asymmetric hinge scoring
module for subgraph matching, as described in Eq. (7) and (3) the encoder module parameterized by φ, used for obtain edge
representation matrices R for all graphs. In the following, we describe the specifications of each of the modules in detail,
beginning with the node features x.
Specification of x•. We aim to tackle the problem of feature agnostic subgraph matching. Hence we set the initial node features
to the same value x• = [1] . This ensures that all the node embeddings start with the same features and structurally isomorphic
nodes end up having the similar embeddings.
Specification of neural alignment module Fθ. Fθ as described in Eq. (10) realizes Gumbel-Sinkhorn operator on the product
LRLθ(Rq) · LRLθ(Rc). Here, LRLθ is a three layer neural network comprising of one linear, one ReLU and and one linear
layer, having latent feature dimension 16. In all cases we use 20 Sinkhorn Operator iterations, with a temperature of 0.1. The
input of Fθ is a pair of edge embedding matrices:Rq for query graph Gq = (Vq, Eq) andRc for corpus graph Gc = (Vc, Ec).
Rq is padded with |Ec| − |Eq| rows of zeros, indicating dummy edges. The output of Fθ is a doubly stochastic matrix of
dimension equal to |Ec|.
Specification of scoring module. We implement the distance function of Eq. (7), which computes an asymmetric distance
measure over a proposed alignment ofRq andRc. The negative of this distance measure is used as a similarity score for ranking
loss.
Specification of graph embedding network. Here, we follow the same architecture proposed in the graph embedding model of
GMN-embed. More in details, INITφ consists of a single linear layer generating 10 dimensional node features; MSGφ consists
of a single linear layer which takes as input a pair of node embedding vectors and outputs a message vector of dimension 20;
AGGRφ aggregates the message vectors incoming to any node using a simple sum, thus generating the aggregate message r• for
the node; and, COMBφ is a gated recurrent unit (GRU), with the aggregated message r• treated as the input to the GRU. The
current node embedding is treated as the hidden state of the GRU, which gets updated conditioned on the input r•.

Here, a single propagation step comprises of executing the MSGφ, AGGRφ and COMBφ modules. In AGGR, we use K = 5
propagation steps, which encapsulates structural information from the K−hop local neighborhood around a node into its
embedding.

D.2 Implementation details of baselines
Here, we specify the implementation details for each of the baselines.
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RWKernel and SPKernel. We use the Grakel implementation.(Siglidis et al. 2020)4

GMN-embed and GMN-match. We use the official Pytorch implementation (Li et al. 2019).5

NeuroMatch. We use the official implementation by the authors. For a fair comparison with all other algorithms, we do not
provide anchor node annotations. The input graphs were the same as ISONET, and the output similarity scores were given to the
ranking module for training.6

SimGNN. We use the official Pytorch implementation (Bai et al. 2019).7

GOTSim. We use the official Pytorch implementation (Doan et al. 2021). However, the original implementation operates on one
graph pair at a time. We found that to be prohibitively slow for processing our larger training dataset. So we have implemented a
faster version which operates on batched inputs, while ensuring consistency of outputs with respect to original implementation.
Still, we were only able to achieve moderate speedup (≈3×), since GOTSim uses a black box combinatorial solver, which
requires input to given one graph pair at a time.8

GraphSim. We leverage the implementation provided by the GOTSim authors. However, we had to implement a batched version
for speedup. This time we were able to achieve a more significant speedup (≈8×).9

Moreover, we ensure a fair comparison of our method against the baselines as follows: (1) Input node features provided
to all baselines are exactly the same as to ISONET. No other (node or edge) features or labels are used at any point. (2) All
baselines are trained using the exact same ranking loss as described in Eq. (19). More details regarding hyperparameter settings
are provided in Appendix D.3. (3) All baselines are trained with an early stopping setup similar to ISONET, as the stopping
criteria of the training process. More details regarding hyperparameters and choice of optimizer are provided in Appendix D.3
(4) The node and graph level embedding dimensions, for the baselines, are the same as in case of ISONET (namely, 10). (5) To
the extent possible, we ensure that, for all baselines, the the number of trainable parameters are close to that in ISONET. We
present parameter counts for all baselines in Table 9.

Parameter Count
GraphSim 2067
GOTSim 304
SimGNN 1671
GMN-embed 1750
GMN-match 2050
NeuroMatch 3463
ISONET 2028

Table 9: Number of parameters in each trainable model.

D.3 Hyperparameter details
In all experiments, we use an early stopping criteria based on validation MAP. Here, we set the "patience" parameter as 50 epochs,
i.e., if the validation MAP does not improve continuously for 50 epochs, we stop training and take the best model obtained so far.
We train all models using the ranking loss defined in Eq. (19) with Adam optimizer, learning rate 10−3 and weight decay
5× 10−4. We checked the performance of ISONET and baselines for margins ranging over [1, 0.001] and generally found the
performance to peak at 0.5. Only for GOTsim, peak performance was observed at margin 0.1. For all models and datasets, we
report the best results observed across the margins.

D.4 Evaluation Metrics
Following standard practice in Information Retrieval systems, we evaluate the performance of a graph retrieval system in terms
of Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR). Given a query graph Gq , the retrieval system is expected
to return a ranked list of corpus graphs. The average precision APq is computed against the ground truth relevance labels. Also,
rankq is the rank of the topmost relevant corpus graph, for the given query graph. Subsequently, we compute MAP and MRR
scores as follows:

MAP =
1

|Q|
∑

q∈Q
APq, MRR =

1

|Q|
∑

q∈Q

1

rankq
(26)

4https://github.com/ysig/GraKeL
5https://github.com/Lin-Yijie/Graph-Matching-Networks
6https://github.com/snap-stanford/neural-subgraph-learning-GNN
7https://github.com/benedekrozemberczki/SimGNN
8https://github.com/khoadoan/GraphOTSim
9https://github.com/khoadoan/GraphOTSim
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D.5 Infrastructure details
We implement ISONET using Python 3.9.6 and PyTorch 1.9.0. The experiments were run on servers equipped with Xeon E5-2620
2.10GHz CPUs, Nvidia Quadro RTX 8000-48 GB GPUs, and Nvidia Titan Xp-12 GB GPUs.

E Additional experiments
E.1 MRR: ISONET vs node alignment

PTC-FR PTC-FM PTC-MM PTC-MR MUTAG AIDS
Node-align
(Node loss)

0.940 0.980 0.973 1.000 0.980 0.964

Node-align
(Edge loss)

0.922 0.940 0.933 0.861 0.924 0.926

ISONET 0.960 1.000 0.980 0.970 0.940 1.000

Table 10: Performance comparison, in terms of MRR, of ISONET against its two alternatives: Node-align (Node loss) and
Node-align (Edge loss), that are obtained by replacing its edge alignment network with two node alignment networks, across all
datasets. In the first alternative, we compute the score dθ,φ(Gc |Gq) =

∑
i,j [(Hq − SHc)+]i,j . In the second alternative, we

compute dθ,φ(Gc |Gq) =
∑
e[(Lq −SLcS>)+]e, where L(e) = A(e) · [FF(re)]. Numbers in bold indicate the best performer.

The results are similar to the observations of Table 3, i.e., edge alignment is more effective than node alignment.

E.2 MRR: Symmetric vs Asymmetric scores

ISONET GMN-embed GMN-match
Symm Asym Symm Asym Symm Asym

PTC-FR 0.940 0.960 0.960 0.908 0.953 0.940
PTC-FM 0.932 1.000 0.841 0.968 0.920 0.890
PTC-MM 0.946 0.980 0.901 0.907 0.946 0.973
PTC-MR 1.000 0.970 0.933 0.935 0.960 0.914
MUTAG 0.907 0.940 0.947 0.884 0.933 0.916

AIDS 0.980 1.000 1.000 0.973 0.953 0.944

Table 11: Performance comparison in terms of mean reciprocal rank (MRR) between asymmetric (7) and symmetric scoring
module, measured using MRR - for ISONET, GMN-match and GMN-embed, across all datasets. Numbers in bold indicate the
best performer. The results are similar to the observations of Table 4, i.e., asymmetric scoring is more effective than symmetric
scoring.

E.3 Visualization of isomorphic subgraph pairs
In Figure 12, we show example graph pairs with seeded isomorphisms, where ISONET is able to propose perfect edge alignments.
Each edge is color-coded; the same colors are used in the edge-to-edge correspondence matrix, where the heatmap shows the
extent of match found by ISONET. First we show the two graphs Gq and Gc. Then we show the soft correspondence matrix.
Finally, we apply a Hungarian assignment algorithm to show a ‘hard’ correspondence matrix in the rightmost column. Edges
are ordered such that the planted isomorphism shows up as a diagonal matrix, if ISONET is successful. We make the following
observations:
(1) Padded (dummy) edges of the query graph are correctly mapped to the corpus edges which are not part of the underlying

subgraph isomorphic to the query graph. This is a significant accomplishment, given that such a subset selection task is
combinatorially expensive, with

(
N
k

)
possible outcomes.

(2) Having identified this underlying relevant corpus subgraph, ISONET is also able to find a perfect edge alignment between
the query graph and this relevant subgraph of corpus graph. Specifically, it satisfies the node consistency criteria that if any
two edges of the query graph share a node, then their matched edges on the corpus side should also have a node in common.
This can be thought of as a logical counterpart to the usual requirement of node alignments honoring edge correspondence.

(3) The off-diagonal entries in the soft correspondence matrix are significant — they correspond to edge pairs with locally
similar neighborhoods.

(4) Sometimes, in case of perfect local symmetries (consider axially flipping the “benzene ring” in the last example), the
Hungarian assignment will achieve the same objective for all members of the symmetric assignment group. Running it with
different initializations will sometimes flip the edge assignment accordingly.
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Figure 12: Example graph pairs such that the query graph Gq (Panel (a)) is an isomorphic subgraph of the corpus graph (Panel
(b)). The matrix Psoft (Panel (c)) denotes the soft edge alignments predicted by ISONET. The right-most permutation matrix
Phard (Panel (c)) is the hard alignment obtained by using a Hungarian solver on top of the soft assignment matrix.
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E.4 Additional experiments on large datasets

Dataset preparation. We also evaluate ISONET’s performance against the baselines, on a larger query set of 300 graphs. The
statistics for this larger dataset are summarized in Table 13. Note that, we trained our retrieval systems on the original smaller
dataset. Therefore, the current evaluation will provide a more aggressive test of the underlying graph retrieval model.

Dataset Avg. |Vq| Avg. |Eq| Avg. |Vc| Avg. |Ec| | {y(Gq, Gc) = 1} | | {y(Gq, Gc) = −1} | |{y(Gq,Gc)=1}|
|{y(Gq,Gc)=−1}|

PTC-FM 8.78 8.30 13.24 13.20 48910 191090 0.26
PTC-FR 8.93 8.46 13.32 13.37 46805 193195 0.24
PTC-MM 8.85 8.40 13.29 13.22 48475 191525 0.25
PTC-MR 8.71 8.20 13.32 13.30 47252 192748 0.25
MUTAG 9.08 9.11 13.34 13.76 51265 188735 0.27
AIDS 8.57 8.15 13.12 13.04 46109 193891 0.24

Table 13: Statistics of the sampled subgraphs for the larger dataset with 300 query graphs.

MAP and MRR analysis. Next, we compare our method against all baselines for this larger dataset. Table 14 summarizes the
results, which reveal similar observations as in Table 2 in the main paper. Moreover, in all datasets other than MUTAG, the MAP
gain achieved by ISONET against the second best baseline is statistically significant (Welch’s t-test, p < 0.001). In terms of
MRR, ISONET shows statistically significant performance gain for all datasets except PTC-MR and MUTAG (Welch’s t-test,
p < 0.001).

Mean Average Precision (MAP)
PTC-FR PTC-FM PTC-MM PTC-MR MUTAG AIDS

SPKernel 0.35 ± 0.01 0.38 ± 0.01 0.38 ± 0.01 0.37 ± 0.01 0.42 ± 0.01 0.36 ± 0.01
RWKernel 0.20 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.01 0.21 ± 0.01 0.19 ± 0.00
GraphSim 0.39 ± 0.01 0.39 ± 0.01 0.41 ± 0.01 0.45 ± 0.01 0.38 ± 0.01 0.37 ± 0.01
GOTSim 0.49 ± 0.01 0.60 ± 0.01 0.47 ± 0.01 0.57 ± 0.01 0.59 ± 0.01 0.55 ± 0.01
SimGNN 0.40 ± 0.01 0.58 ± 0.01 0.40 ± 0.01 0.45 ± 0.01 0.50 ± 0.01 0.37 ± 0.01
GMN-embed 0.82 ± 0.01 0.81 ± 0.01 0.79 ± 0.01 0.83 ± 0.01 0.87 ± 0.01 0.79 ± 0.01
GMN-match 0.84 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.91 ± 0.01 0.82 ± 0.01
NeuroMatch 0.74 ± 0.01 0.74 ± 0.01 0.78 ± 0.01 0.67 ± 0.01 0.81 ± 0.01 0.76 ± 0.01
ISONET 0.91 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.93 ± 0.01 0.92 ± 0.01

Mean Reciprocal Rank (MRR)
PTC-FR PTC-FM PTC-MM PTC-MR MUTAG AIDS

SPKernel 0.66 ± 0.02 0.62 ± 0.02 0.69 ± 0.02 0.64 ± 0.02 0.74 ± 0.02 0.60 ± 0.02
RWKernel 0.50 ± 0.02 0.46 ± 0.02 0.50 ± 0.02 0.52 ± 0.02 0.20 ± 0.02 0.41 ± 0.02
GraphSim 0.89 ± 0.01 0.61 ± 0.02 0.84 ± 0.02 0.88 ± 0.02 0.70 ± 0.02 0.57 ± 0.02
GOTSim 0.81 ± 0.02 0.87 ± 0.01 0.71 ± 0.02 0.89 ± 0.01 0.80 ± 0.02 0.83 ± 0.02
SimGNN 0.78 ± 0.02 0.83 ± 0.02 0.79 ± 0.02 0.82 ± 0.02 0.66 ± 0.02 0.81 ± 0.02
GMN-embed 0.98 ± 0.01 0.90 ± 0.01 0.92 ± 0.01 0.90 ± 0.01 0.96 ± 0.01 0.93 ± 0.01
GMN-match 0.96 ± 0.01 0.94 ± 0.01 0.98 ± 0.01 0.98 ± 0.00 0.99 ± 0.01 0.95 ± 0.01
NeuroMatch 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.90 ± 0.01 0.90 ± 0.02 0.98 ± 0.01
ISONET 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.00 1.00 ± 0.00

Table 14: Graph retrieval performance measured in terms of mean average precision (MAP) (top half) and mean reciprocal rank
(MRR) (bottom half) for the larger datasets. Here, we also report the standard error across all the queries along with the mean.
We consider all methods, i.e., ISONET and all the state-of-the-art baselines, viz., Shortest path kernel (SPKernel), Random Walk
kernel (RWKernel) (Vishwanathan et al. 2010), GraphSim (Bai et al. 2020), GOTSim (Doan et al. 2021), SimGNN (Bai et al.
2019), GMN-embed, GMN-match (Li et al. 2019) and Neuromatch (Lou et al. 2020). The experimental setup is same as in
Table 2. Here, we observe that superior performance of ISONET also holds true for this larger dataset.

Drill down analysis. We evaluate the performance of ISONET against baseline retrieval models, by comparing per query graph
AP scores for the larger query set of 300 graphs. In particular, for each query graph, we measure ISONET’s gain or loss with
respect to the three top performing baselines GMN-embed, GMN-match and NeuroMatch.
PTC-FR: ISONET outperforms GMN-embed for 92.3%, GMN-match for 84.0% and Neuromatch for 86.0% of the query

graphs.
PTC-FM: ISONET outperforms GMN-embed for 96.7%, GMN-match for 94.7% and Neuromatch for 93.7% of the query

graphs.
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Figure 15: Evaluation of per-query performance of ISONET against top performing baselines. We plot AP(ISONET)-AP(Baseline),
which measures the gain (above x axis) or loss (below x-axis), in decreasing order of magnitude. The plot for GMN-match lies
closest to the x axis, thus indicating it to be the second best performer across all datasets.

PTC-MR: ISONET outperforms GMN-embed for 92.3%, GMN-match for 81.0% and Neuromatch for 100% of the query
graphs.

PTC-MM: ISONET outperforms GMN-embed for 93.3%, GMN-match for 83.0% and Neuromatch for 93.7% of the query
graphs.

AIDS: ISONET outperforms GMN-embed for 98.3%, GMN-match for 84.3% and Neuromatch for 94.3% of the query graphs.
MUTAG: ISONET outperforms GMN-embed for 67.3%, GMN-match for 51.0% and Neuromatch for 86.0% of the query

graphs.
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