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My research focuses on developing a unified framework for graph retrieval, which returns a top-K list of
relevant graphs or subgraphs in response to a query graph. Graphs serve as a common formalism across
various data modalities, such as natural language queries, parse trees, knowledge graphs, and images, facil-
itating seamless inter-operation during retrieval. To align and connect graphs from these diverse modalities,
neural graph models provide superior node and edge representations, transcending traditional schema unifi-
cation. An effective neural graph retrieval model should ensure (i) high retrieval accuracy, (ii) scalability
while handling large-sizes or large-number of graphs, and (iii) interpretability to justify its responses through
alignment-based explanations.
Against this backdrop, my current research explores the following directions:
1. Designing and learning relevance models for graph retrieval: Designing neural models for graph re-
trieval and alignment, subgraph matching, designing neural analogs to combinatorial graph optimizations.
2. ANN Support for Graph Search Models: Designing Approximate Nearest Neighbor (ANN) techniques
compatible with (symmetric and asymmetric) graph similarity functions to enable sublinear time retrieval.

1 Designing and Learning Relevance Models for Graph Retrieval
Defining relevance in graph search is inherently complex, traditionally relying on computationally intensive
combinatorial methods. My prior works [14, 20, 21, 23, 25, 26] introduced both early and late interaction neu-
ral architectures for Subgraph Isomorphism (SubIso) [20, 21, 26], Maximum Common Subgraph (MCS) [25],
and Graph Edit Distance (GED) [14, 23], all trainable under distant supervision using only pairwise rele-
vance judgments.These models are end-to-end differentiable and leverage Sinkhorn-based [8, 18] solvers to
optimize transportation objectives, enabling task-specific scoring through expressive cost functions and in-
terpretable relevance via soft alignment approximations derived from the resulting transport maps. Crucially,
our neural formulation of GED is the first to support variable node and edge edit costs—bridging a longstand-
ing gap between neural models and classical combinatorial solvers—and enables a unified framework [14] for
modeling both symmetric and asymmetric graph similarity notions, including SubIso, MCS, and equal-cost
GED [3, 4]. Alongside this, we identified [13] a pervasive data leakage issue in widely used graph bench-
marks, stemming from GNNs’ permutation invariance over structurally isomorphic yet non-identical graphs.
Building on a theoretical insight that GED alignments remain stable across a wide range of cost settings,
we introduced [24] scalable data augmentation and principled adversarial testing protocols to systematically
address this issue.
Future work: Moving forward, I am particularly interested in advancing neural subgraph search in large-
scale graphs, where identifying and ranking relevant substructures within a single, massive corpus (e.g.,
knowledge graphs) poses distinct challenges. A recent step in this direction is our work [22] on clique number
estimation, where we propose a neural model for predicting the size of the maximum clique. Building on
this, my next goal is to develop differentiable modules capable of retrieving compact subgraphs for a given
query—whether a graph or a set of keywords—where different query components may align with distinct
substructures across the corpus graph. The objective is to identify a single, coherent subgraph that jointly
covers all query components while promoting structural proximity among the matched regions. This opens a
rich research direction on matching complex queries to semantically relevant yet minimally dispersed regions
of large graphs, with compactness serving as a regularizing prior for both interpretability and relevance.

2 ANN Support for Graph Search Models
Ranking corpus graphs by similarity scores for a given query graph can be prohibitively expensive for large
databases. This issue can be mitigated through graph indexing and approximate nearest neighbor search
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(ANNS) techniques such as locality-sensitive hashing (LSH). However, most graph matching models require
customized scoring functions that are not LSH-compatible. My recent work, FourierHashNet [27], addresses
the LSHability of an Order Embedding based asymmetric distance, previously used to detect subgraph iso-
morphism [17]. FourierHashNet is an asymmetric LSH which transforms the Order Embedding distance into
a bounded dominance similarity measure, applies a Fourier transformation, and uses importance-sampled
estimates to approximate the expectation of inner products in the frequency domain. This renders Order
Embeddings-based relevance measures [29] LSH-compatible.
Future work: In this line of research, I am eager to continue working on three key areas:
• Extension to shift-invariant scoring functions: Our proposed asymmetric LSH framework in FourierHash-
Net [27] can be extended to support any shift-invariant scoring function, potentially enabling LSH compat-
ibility for a broad class of relevance models. This includes, for instance, volume-based scores from Box
Embeddings [7] and facility location scores used in ColBERT [16], which offer strong modeling capabilities
but remain underutilized in industrial recommender systems due to the absence of efficient indexing mecha-
nisms. To explore this direction, I plan to construct targeted benchmarks and evaluate the effectiveness of our
Fourier-based featurization in indexing these shift-invariant scoring functions.
• LSH for transportation-based graph similarity: While my earlier work in FourierHashNet [27] enabled
sublinear-time retrieval for subgraph isomorphism using order embeddings, extending LSH to more expres-
sive, alignment-driven similarities remains an open problem. Existing LSH methods either target asymmetric
distances in Euclidean space [19, 27, 28], or are limited to Earth Mover’s Distance (EMD) with symmetric
costs [1, 2, 5, 6, 10–12, 15]. No known approach handles EMD with asymmetric cost structures, which is a
requirement in many graph retrieval tasks. Motivated by our GED framework, which unifies diverse graph
similarities under a generalized transportation score, I plan to develop compatible LSH methods enabling
scalable and practical alignment-aware retrieval.
• Multi-Vector Indexing for Graph Retrieval: My work explores multi-vector graph representations opti-
mized using transport-based objective, motivating the need for efficient multi-vector indexing strategies that
respect nuanced graph similarity. I plan to draw on insights from dense text retrieval like ColBERT [16] and
SPLADE [9], which scale through token-level relevance and learned sparse expansions. In a similar vein,
I aim to learn a (potentially latent) vocabulary of discriminative subgraph motifs that serve as soft “tokens”
with associated relevance weights. These will support posting list-style inverted indexing, combining the
accuracy of alignment-based scoring with the scalability of classical IR methods.

Broader Significance and Outlook
My work on scalable graph retrieval and indexing aims to support next-generation retrieval systems that
are both structure-aware and system-efficient. Graphs unify diverse domains—molecules and proteins in
biomedicine, knowledge graphs in QA, scene graphs in vision, and user-item networks in recommenda-
tion—where structural constraints are key to relevance. By designing retrieval models that respect these
constraints while scaling to real-world corpora, my research enables richer, more reliable signals than con-
ventional vector similarity.
At the systems level, I develop locality-sensitive hashing, multi-vector indexing, and related techniques that
reduce retrieval latency under expressive similarity functions. These advances connect with vector quanti-
zation, graph-based ANN, and scalable compression, all critical for low-latency, high-throughput retrieval
in practice. The resulting methods not only advance semantic search and recommender systems, but also
strengthen retrieval-augmented generation (RAG) pipelines, where multi-modal, token-level retrieval is es-
sential. By bridging structure-aware relevance with efficient indexing, my research contributes to the foun-
dation of next-generation retrieval models that are both domain-adaptive and system-efficient.
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