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My current research plan is strongly motivated by the goal of building a unified framework for graph retrieval
— which, given a query graph, returns a top-K list of relevant graphs or subgraphs. Graphs provide a com-
mon formalism across natural language queries, parse trees, Knowledge Graphs (KG), graphs extracted from
tables and charts, images (scene graphs), etc., which allows data from different modalities to inter-operate
seamlessly during retrieval. To align and connect across graphs from diverse modalities, we need node and
edge representations that transcend traditional schema unification. Neural graph models provide a natural
alternative. I therefore work primarily within a neural representation and retrieval framework.
Problem Setup and Challenges:
The corpus graph(s) are sourced from diverse information sources, and are linked together as needed in a
preprocessing step. Examples of this step may be named entity detection in text and tables, linking mention
spans to canonical entities in a KG such as Wikidata [46]; or connecting an object (‘puppy’) in an image to
generic types (‘pet’, ‘animal’) in a KG [2, 9, 20].
Subsequent retrieval belongs to two distinct paradigms. The first involves searching for subgraphs within a
single, large, real-world knowledge graph, such as Wikidata, DBpedia, or Freebase [3, 12, 46]. This requires
identifying, scoring, and ranking relevant subgraphs from the larger corpus graph in response to a given query.
The second paradigm involves a collection of smaller corpus graphs, typically resulting from scene graph
extractions from images [22, 24, 30], local extractions from text passages and tables, molecular graphs [34],
and others. Here, the retrieval task involves ranking smaller corpus graphs based on a given query.
In either paradigm, the goal is to report a ranked list of subgraphs, in response to a given query which may
be provided as a natural language query utterance, a query image, or a query graph. An effective neural
graph retrieval model should aim to achieve (i) high retrieval accuracy, ensuring that subgraphs are ranked
according to their relevance to the query; (ii) scalability, enabling the efficient processing of large-sized
graphs or a large number of graphs; and (iii) interpretability, allowing the model to justify its responses
through alignment-based explanations.
Against this backdrop, my current research explores the following directions:
1. Designing and learning relevance models for graph retrieval: Designing neural models for graph re-
trieval and alignment, subgraph matching, designing neural analogs to combinatorial graph optimizations.
2. LSH compatibility of graph search models: Designing symmetric and asymmetric LSH techniques
compatible with graph similarity scoring functions to enable sublinear time retrieval.

1 Designing and Learning Relevance Models for Graph Retrieval
As with other information retrieval tasks, defining relevance in graph search applications can be complex
and nuanced. Conventional methods to measure relevance rely on combinatorial approaches like graph edit
distance (GED), maximum common subgraph counting (MCS), and various graph or subgraph matching
techniques [6, 28]. There has also been a growing interest in graph matching methods to assess similarity
between image pairs [10, 16, 26, 42, 48]. However, these existing methods usually require a known ground
truth correspondence between nodes and edges, which can be expensive and time-consuming to produce.
I believe that neural retrieval models should be trainable under distant supervision using pairwise relevance
judgements, without relying on any prior information about ground truth correspondence between nodes or
edges. Therefore, any neural graph retrieval model should be able to capture the underlying latent relevance
between and query and corpus graphs In this line of research, my earlier works [39, 40] introduced neural
architectures aligned with combinatorial concepts for identifying subgraph isomorphism [40] and maximum
common subgraph [39]. Despite their complex alignment tasks, these architectures are fully differentiable
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and support backpropagation, enabling end-to-end training. This is made possible through the use of the
Gumbel-Sinkhorn network [33], which provides a soft approximation of the underlying node and edge align-
ment permutation as a doubly stochastic matrix This approximation allows us to create an alignment-driven
asymmetric scoring layer, tailored to each specific combinatorial matching task. Furthermore, during in-
ference, our neural graph retrieval systems are able to justify relevance scores with approximate alignment
witnesses. This renders our model interpretable, as they pinpoint the underlying reason behind a given rele-
vance score, e.g., which substructure of the corpus graph is playing the key role in relevance.
Future work: In this line of research, I am eager to continue working on three key areas:

• Unifying different types of graph scoring layers: Instead of designing custom scoring layers for each com-
binatorial notion, as I did in previous works [39, 40], I am currently focusing on building a unified neural
model capable of accommodating a broad spectrum of late interaction scoring layers. A promising approach
involves modeling Graph Edit Distance (GED), because the variable costs associated with adding or deleting
nodes and edges allow GED to represent both symmetric and asymmetric relationships between graph pairs.
This flexibility makes GED suitable for various graph comparison tasks, such as identifying the Maximum
Common Subgraph and verifying Subgraph Isomorphism [13]. Although recent research [6, 7, 19, 36, 51]
has utilized Graph Neural Networks (GNNs) to create neural models for GED computation, these approaches
often overlook the potential for edit operations with different costs, leading to an overemphasis on cost-
invariant edit sequences. My current work aims to address this limitation by incorporating GED with diverse
edit costs, providing a more accurate and flexible framework for graph comparison.

• Proposing node-edge consistent alignments: Our current differentiable alignment module frequently gen-
erates inconsistent alignments for node and edge. This inconsistency is somewhat expected when trying to
approximate the inherently complex Quadratic Assignment Problem (QAP) with polynomial-time neural net-
work solvers. However, there is an opportunity to reduce the optimality gap, especially when considering the
distributional characteristics of any given dataset. To improve alignment consistency, I plan to incorporate
ideas from the Knowledge Graph (KG) alignment community [43, 47, 49, 50], where there is an emphasis
on the dual role of node and edge alignments. In this approach, aligning nodes can provide additional infor-
mation for edge alignment, and vice versa. Preliminary experiments focusing on improving edge alignment
consistency, using the Kronecker product of the node alignments, have shown a significant improvement in
the quality of the proposed matching. This approach offers a promising path toward develop more reliable
and unified scoring mechanisms for neural graph models.

• Improved interpretability via discrete structure matching: While the Gumbel-Sinkhorn network [33] of-
fers effective soft neural alignments for optimizing subjective human relevance judgments, proposing inter-
pretable justifications for relevance scoring in richly attributed graphs requires distinct alignment explanations
which account for both graph structure and node/edge labels. This necessitates consideration of both discrete
structural alignment between graph pairs as well as similarity across dense features. Consequently, devel-
oping neural models for combinatorial graph alignment becomes crucial, where neural networks must make
discrete decisions about alignment for nodes and edges in graph pairs. A current area of research explores
designing optimization processes to train network architectures that make discrete decisions [8, 11, 35]. Dur-
ing my earlier work on “circuit neural networks” for logic synthesis and optimization at Google DeepMind,
I faced similar challenges in discrete decision-making. I plan to work on designing more effective neural
optimization routines to address these challenges.

2 LSH Compatibility of Graph Search Models
Ideally, a graph search system needs to rank all the corpus graphs by similarity scores for a given query graph.
However, computing these scores can be prohibitively expensive when dealing with large graph databases.
This bottleneck can be addressed through graph indexing, followed by locality-sensitive hashing (LSH). Yet,
most graph matching models [19, 27], including those from our previous works [39, 40], use cross-graph
neural alignment networks, which leave the resultant graph embeddings dependent on query-corpus pair.

2



In my recent work FourierHashNet [41], we approached a simpler scenario specific to subgraph isomorphism-
based relevance [29]. In this context, the key task is to check whether the query graph is contained within a
corpus graph. This is done by encoding each graph into fixed-size vectors and then checking for element-wise
vector dominance. This notion of containment check using order embeddings [32], is widely used across
various domains, including images, graphs [29], and text [25, 44]. However, conventional LSH typically
caters to symmetric or straightforward asymmetric distance functions, which makes it unsuitable for this type
of asymmetric dominance check.
To overcome this limitation, I proposed an asymmetric LSH, FourierHashNet [41], which transforms the dom-
inance distance into a bounded dominance similarity measure, which is then converted into a form amenable
to LSH through a Fourier transformation, resulting in an expectation of inner products of functions in the
frequency domain. Finally, this expectation is approximated using importance-sampled estimates, thereby
enabling the application of traditional LSH but within the frequency domain. This approach, inspired by
the seminal work by Rahimi and Recht [37], presents an initial solution to the challenge of indexing graph
databases while maintaining relevance for asymmetric similarity measures driven by subgraph isomorphism.
Future work: In this line of research, I am eager to continue working on three key areas:
• Extension to other scoring functions: Our proposed asymmetric LSH framework in FourierHashNet [41]
can be extended to work with any shift-invariant function, potentially making several useful scoring func-
tions LSH-compatible, such as Box Embedding-based volume scores [15] and facility location scores used in
ColBERT [23]. Many such scoring functions, despite their modeling benefits, have often not yet been incor-
porated into mainstream industrial recommendation systems due to a lack of LSH compatibility. To explore
this extension, I plan to create datasets and conduct experiments to test the performance of our FourierHash-
Net framework in retrieval scenarios that use these exotic scores. Finally, one of my aspirational goals is to
design an LSH for the Sinkhorn Distance for Optimal Transport [18, 45], which will make it immediately
applicable to graph retrieval applications that rely on Sinkhorn networks [33] for alignment-driven scoring.
• Benchmarking data-driven LSH performance: In situations where the data is not isotropic, one can train a
data-sensitive LSH to balance the distribution across buckets. My previous work [38, 41] showed that train-
able data-sensitive LSH offers a significantly improvement in trade-off between retrieval accuracy and query-
time latency compared to traditional data-agnostic Random Hyperplanes LSH. Moreover, in FourierHash-
Net [41], data-driven LSH outperformed other non-LSH indexing methods like IVF [21] and HNSW [31].
Unfortunately, data-driven LSH is often neglected in practice and is absent from major indexing tools like
Falconn [1] and Faiss [21], as well as key ANN benchmarks [4]. To address this gap, I am working on a
comprehensive benchmarking evaluation to assess the performance of trained Random Hyperplanes LSH in
comparison with other indexing approaches.
• Broader applicability of asymmetric LSH with exotic collision probabilities. There is a growing interest in
LSH due to emerging applications beyond search. For example, the LGD sampler [14] uses LSH functions
that are sensitive to classification loss functions, some of which are non-symmetric. This indicates that new
asymmetric LSH approaches could lead to more efficient optimization routines for a variety of problems.
Similarly, the efficient kernel-matrix multiplication algorithm by Backurs et al. [5] relies on LSH but cur-
rently only supports symmetric kernels. Asymmetric LSH could significantly expand the applicability of this
framework. Similarly, an asymmetric LSH designed for linear regression and classification loss has been used
to develop differentially private classifiers[17], showing that new asymmetric LSH functions could increase
the versatility and utility of such frameworks. I plan to explore additional domains and applications where
our asymmetric Fourier hashing framework can prove useful.

Plans
Over the next year, I plan to gather graphs from various modalities (including images, text, and tables), along
with other datasets for diverse scoring functions, and set up QA test-beds and benchmarks. I will then proceed
with the future work detailed above. We will release code in the public domain as we make progress.
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