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Abstract

Graph Edit Distance (GED) measures the (dis-)similarity between two given graphs,1

in terms of the minimum-cost edit sequence that transforms one graph to the2

other. However, the exact computation of GED is NP-Hard, which has recently3

motivated the design of neural methods for GED estimation. However, they do not4

explicitly account for edit operations with different costs. In response, we propose5

GRAPHEDX, a neural GED estimator that can work with general costs specified6

for the four edit operations, viz., edge deletion, edge addition, node deletion and7

node addition. We first present GED as a quadratic assignment problem (QAP)8

that incorporates these four costs. Then, we represent each graph as a set of node9

and edge embeddings and use them to design a family of neural set divergence10

surrogates. We replace the QAP terms corresponding to each operation with their11

surrogates. Computing such neural set divergence require aligning nodes and12

edges of the two graphs. We learn these alignments using a Gumbel-Sinkhorn13

permutation generator, additionally ensuring that the node and edge alignments14

are consistent with each other. Moreover, these alignments are cognizant of both15

the presence and absence of edges between node-pairs. Experiments on several16

datasets, under a variety of edit cost settings, show that GRAPHEDX consistently17

outperforms state-of-the-art methods and heuristics in terms of prediction error.18

1 Introduction19

The Graph Edit Distance (GED) between a source graph, G, and a target graph, G′, quantifies the20

minimum cost required to transform G into a graph isomorphic to G′. This transformation involves a21

sequence of edit operations, which can include node and edge insertions, deletions and substitutions.22

Each type of edit operation may incur a different and distinctive cost, allowing the GED framework23

to incorporate domain-specific knowledge. Its flexibility has led to the widespread use of GED for24

comparing graphs across diverse applications including graph retrieval [5, 6], pattern recognition [46],25

image and video indexing [50, 48] and chemoinformatics [21]. Because costs for addition and deletion26

may differ, GED is not necessarily symmetric, i.e., GED(G,G′) ̸= GED(G′, G). This flexibility27

allows GED to model a variety of graph comparison scenarios, such as finding the Maximum Common28

Subgraph and checking for Subgraph Isomorphism [13]. In general, it is hard to even approximate29

GED [32]. Recent work [5, 6, 19, 55, 39] has leveraged graph neural networks (GNNs) to build30

neural models for GED computation, but many of these approaches cannot account for edit operations31

with different costs. Moreover, several approaches [40, 31, 55, 6] cast GED as the Euclidean distance32

between graph embeddings, leading to models that are overly attuned to cost-invariant edit sequences.33

1.1 Present work34

We propose a novel neural model for computing GED, designed to explicitly incorporate the various35

costs of edit operations. Our contributions are detailed as follows.36
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Neural set divergence surrogates for GED We formulate GED under general (non-uniform) cost37

as a quadratic assignment problem (QAP) with four asymmetric distance terms representing edge38

deletion, edge addition, node deletion and node addition. The edge-edit operations involve quadratic39

dependencies on a node alignment plan — a proposed mapping of nodes from the source graph to40

the target graph. To avoid the the complexity of QAP [44], we design a family of differentiable set41

divergence surrogates, which can replace the QAP objective with a more benign one. In this approach,42

each graph is represented as a set of embeddings of nodes and node-pairs (edges or non-edges). We43

replace the original QAP distance terms with their corresponding set divergences, and obtain the node44

alignment from a differentiable alignment generator modeled using a Gumbel-Sinkhorn network.45

This network produces a soft node permutation matrix based on contextual node embeddings from the46

graph pairs, enabling the computation of the overall set divergence in a differentiable manner, which47

facilitates end-to-end training. Our proposed model relies on late interaction, where the interactions48

between the graph pairs occur only at the final layer, rather than during the embedding computation49

in the GNN. This supports the indexing of embedding vectors, thereby facilitating efficient retrieval50

through LSH [25, 24, 12], inverted index [20], graph based ANN [34, 37] etc.51

Learning all node-pair representations The optimal sequence of edits in GED is heavily in-52

fluenced by the global structure of the graphs. A perturbation in one part of the graph can have53

cascading effects, necessitating edits in distant areas. To capture this sensitivity to structural changes,54

we associate both edges as well as non-edges with suitable expressive embeddings that capture the55

essence of subgraphs surrounding them. Note that the embeddings for non-edges are never explicitly56

computed during GNN message-passing operations. They are computed only once, after the GNN57

has completed its usual message-passing through existing edges, thereby minimizing additional58

computational overhead.59

Node-edge consistent alignment To ensure edge-consistency in the learned node alignment map,60

we explicitly compute the node-pair alignment map from the node alignment map and then utilize this61

derived map to compute collective edge deletion and addition costs. More precisely, if (u, v) ∈ G62

and (u′, v′) ∈ G′ are matched, then the nodes u and v are constrained to match with u′ and v′ (or, v′63

and u′) respectively. We call our neural framework as GRAPHEDX.64

Our experiments across several real datasets show that (1) GRAPHEDX outperforms several state-of-65

the-art methods including those that use early interaction; (2) the performance of current state-of-66

the-art methods improves significantly when their proposed distance measures are adjusted to reflect67

GED-specific distances, as in our approach.68

2 Problem setup69

Notation The source graph is denoted by G = (V,E) and the target graph by G′ = (V ′, E′). Both70

graphs are undirected and are padded with isolated nodes to equalize the number of nodes to N .71

The adjacency matrices for G and G′ after padding are A,A′ ∈ {0, 1}N×N . (Note that we will use72

M⊤, not M ′, for the transpose of matrix M .) The sets of padded nodes in G and G′ are denoted by73

PaddedNodesG and PaddedNodesG′ respectively. We construct η ∈ {0, 1}N , where η[u] = 0 if74

u ∈ PaddedNodesG and 1 otherwise (same for G′). The embedding of a node u ∈ V computed at75

propagation layer k by the GNN, is represented as xk(u). Edit operations, denoted by edit, belong to76

one of four types, viz., (i) node deletion, (ii) node addition, (iii) edge deletion, (iv) edge addition. Each77

operation edit is assigned a cost cost(edit). The node and node-pair alignment maps are described78

using (hard) permutation matrices P ∈ {0, 1}N×N and S ∈ {0, 1}(N2 )×(N2 ) respectively. Given that79

the graphs are undirected, node-pair alignment need only be specified across at most
(
N
2

)
pairs. When80

a hard permutation matrix is relaxed to a doubly-stochastic matrix, we call it a soft permutation81

matrix. We use P and S to refer to both hard and soft permutations, depending on the context. We82

denote PN as the set of all hard permutation matrices of dimension N ; [N ] as {1, . . . , N} and ∥A∥1,183

to describe
∑

u,v |A[u, v]|. For two binary variables c1, c2 ∈ {0, 1}, we denote J(c1, c2) as (c1 XOR84

c2), i.e., J(c1, c2) = c1c2 + (1− c1)(1− c2).85

Graph edit distance with general cost We define an edit path as a sequence of edit operations86

o = {edit1, edit2, . . .}; and O(G,G′) as the set of all possible edit paths that transform the source87

graph G into a graph isomorphic to the target graph G′. Given O(G,G′) and the cost associated with88

each operation edit, the GED between G and G′ is the minimum collective cost across all edit paths89
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in O(G,G′). Formally, we write [14, 7]:90

GED(G,G′) = min
o={edit1,edit2,...}∈O(G,G′)

∑
i∈[|o|] cost(editi). (1)

In this work, we assume a fixed cost for each of the four types of edit operations. Specifically, we use91

a⊖, a⊕, b⊖ and b⊕ to represent the costs for edge deletion, edge addition, node deletion, and node92

addition, respectively. These costs are not necessarily equal, in contrast to the assumptions made in93

previous works [5, 31, 55, 39]. Additional discussion on GED with node substitution in presence of94

labels can be found in Appendix D.95

Problem statement Our objective is to design a neural architecture for predicting GED under96

a general cost framework, where the edit costs a⊖, a⊕, b⊖ and b⊕ are not necessarily the same.97

During the learning stage, these four costs are specified, and remain fixed across all training instances98

D = {(Gi, G
′
i,GED(Gi, G

′
i))}i∈[n]. Note that the edit paths are not supervised. Later, given a test99

instance G,G′, assuming the same four costs, the trained system has to predict GED(G,G′).100

3 Proposed approach101

In this section, we first present an alternative formulation of GED as described in Eq. (1), where102

the edit paths are induced by node alignment maps. Then, we adapt this formulation to develop103

GRAPHEDX, a neural set distance surrogate, amenable to end-to-end training. Finally, we present the104

network architecture of GRAPHEDX.105

3.1 GED computation using node alignment map106

Given the padded graph pair G and G′, deleting a node u ∈ V can be viewed as aligning node u107

with some padded node u′ ∈ PaddedNodesG′ . Similarly, adding a new node u′ to G can be seen as108

aligning some padded node u ∈ PaddedNodesG with node u′ ∈ V ′. Likewise, adding an edge to G109

corresponds to aligning a non-edge (u, v) ̸∈ E with an edge (u′, v′) ∈ G′. Conversely, deleting an110

edge in G corresponds to aligning an edge (u, v) ∈ G with a non-edge (u′, v′) /∈ G′.111

Therefore, GED(G,G′) can be defined in terms of a node alignment map. Let ΠN represent the set of112

all node alignment maps π : [N ]→ [N ] from V to V ′. Recall that ηG[u] = 0 if u ∈ PaddedNodesG113

and 1 otherwise.114

min
π∈ΠN

1

2

∑
u,v

(
a⊖ · I [(u, v) ∈ E ∧ (π(u), π(v)) ̸∈ E′] + a⊕ · I [(u, v) ̸∈ E ∧ (π(u), π(v)) ∈ E′]

)
+
∑
u

(
b⊖ · ηG[u] (1− ηG′ [π(u)]) + b⊕ · (1− ηG[u]) ηG′ [π(u)]

)
. (2)

In the above expression, the first sum iterates over all pairs of (u, v) ∈ [N ] × [N ] and the second115

sum iterates over u ∈ [N ]. Because both graphs are undirected, the fraction 1/2 accounts for double116

counting of the edges. The first and second terms quantify the cost of deleting and adding the edge117

(u, v) from and to G, respectively. The third and the fourth terms evaluate the cost of deleting and118

adding node u from and to G, respectively.119

GED as a quadratic assignment problem In its current form, Eq. (2) cannot be immediately120

adapted to a differentiable surrogate. To circumvent this problem, we provide an equivalent matricized121

form of Eq. (2), using a hard node permutation matrix P instead of the alignment map π. We compute122

the asymmetric distances between A and PA′P⊤ and combine them with weights a⊖ and a⊕.123

Notably, ReLU
(
A− PA′P⊤) [u, v] is non-zero if the edge (u, v) ∈ E is mapped to a non-edge124

(u′, v′) ∈ E′ with P [u, u′] = P [v, v′] = 1, indicating deletion of the edge (u, v) from G. Similarly,125

ReLU
(
PA′P⊤ −A

)
[u, v] becomes non-zero if an edge (u, v) is added to G. Therefore, for the126

edit operations involving edges, we have:127

I [(u, v) ∈ E ∧ (π(u), π(v)) ̸∈ E′] = ReLU
(
A− PA′P⊤) [u, v], (3)

I [(u, v) ̸∈ E ∧ (π(u), π(v)) ∈ E′] = ReLU
(
PA′P⊤ −A

)
[u, v]. (4)

Similarly, we note that ReLU (ηG[u]− ηG′ [π(u)]) > 0 if u ̸∈ PaddedNodesG and π(u) ∈128

PaddedNodesG′ , which allows us to compute the cost of deleting the node u from G. Similarly, we129

use ReLU (ηG′ [π(u)]− ηG[u]) to account for the addition of the node u to G. Formally, we write:130

ηG[u] (1− ηG′ [π(u)]) = ReLU (ηG[u]− ηG′ [π(u)]) , (5)
(1− ηG[u]) ηG′ [π(u)] = ReLU (ηG′ [π(u)]− ηG[u]) . (6)
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<latexit sha1_base64="Dhjb2J1v/V5/7PclgCwaSuqShS4=">AAACAXicdVDLSgNBEJyNrxhfUS+Cl8EgeFpmfcZb0IsniWBMIAlhdtJJhsw+mOkVwxIv/ooXD4p49S+8+TdOYgQVLWgoqrrp7vJjJQ0y9u5kpqZnZuey87mFxaXllfzq2pWJEi2gIiIV6ZrPDSgZQgUlKqjFGnjgK6j6/dORX70GbWQUXuIghmbAu6HsSMHRSq38Bm0g3KARaRl0cA44bKWNuCeHrXyBuR47ZIxR5rLioeUjsnfsHRep57IxCmSCciv/1mhHIgkgRKG4MXWPxdhMuUYpFAxzjcRAzEWfd6FuacgDMM10/MGQblulTTuRthUiHavfJ1IeGDMIfNsZcOyZ395I/MurJ9gpNlMZxglCKD4XdRJFMaKjOGhbahCoBpZwoaW9lYoe11ygDS1nQ/j6lP5PrnZd78BlF/uF0skkjizZJFtkh3jkiJTIGSmTChHkltyTR/Lk3DkPzrPz8tmacSYz6+QHnNcPgR6Xlw==</latexit>

PermNet�

<latexit sha1_base64="Ij3jYkiQaeRX9WhWPnGQVHiaxYU=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GjI+arsrunHZgn1AO0gmvW1jM5khyQhl6Be4caGIWz/JnX9jpq2gogcCh3POJfeeIBZcG0I+nNzS8srqWn69sLG5tb1T3N1r6ShRDJosEpHqBFSD4BKahhsBnVgBDQMB7WB8lfnte1CaR/LGTGLwQzqUfMAZNVZq1G+LJeJ6pEwIwcQllbLlGTmtetUK9lwyQwktYPPvvX7EkhCkYYJq3fVIbPyUKsOZgGmhl2iIKRvTIXQtlTQE7aezRaf4yCp9PIiUfdLgmfp9IqWh1pMwsMmQmpH+7WXiX143MYOKn3IZJwYkm380SAQ2Ec6uxn2ugBkxsYQyxe2umI2ooszYbgq2hK9L8f+kdeJ65y5pnJVql4s68ugAHaJj5KELVEPXqI6aiCFAD+gJPTt3zqPz4rzOozlnMbOPfsB5+wT9+Y0S</latexit>

P

<latexit sha1_base64="qQqkHPzWEl0gb++jqteCueBtEVQ=">AAAB/HicdVDLSgNBEJz1GeMrmqOXwSB4WmZ9xpvoxYNCBGMC2RBmJx0zOPtgplcMS/wVLx4U8eqHePNvnI0RVLSgoajqprsrSJQ0yNi7MzE5NT0zW5grzi8sLi2XVlYvTZxqAXURq1g3A25AyQjqKFFBM9HAw0BBI7g+zv3GDWgj4+gCBwm0Q34VyZ4UHK3UKZV9hFvMzk5rw07mYx+QDzulCnM9tscYo8xl1T3Lc7J94B1UqeeyESpkjFqn9OZ3Y5GGEKFQ3JiWxxJsZ1yjFAqGRT81kHBxza+gZWnEQzDtbHT8kG5YpUt7sbYVIR2p3ycyHhozCAPbGXLsm99eLv7ltVLsVduZjJIUIRKfi3qpohjTPAnalRoEqoElXGhpb6WizzUXaPMq2hC+PqX/k8st19t12flO5fBoHEeBrJF1skk8sk8OyQmpkToRZEDuySN5cu6cB+fZeflsnXDGM2XyA87rB6wKlXI=</latexit>

MLP✓

<latexit sha1_base64="qQqkHPzWEl0gb++jqteCueBtEVQ=">AAAB/HicdVDLSgNBEJz1GeMrmqOXwSB4WmZ9xpvoxYNCBGMC2RBmJx0zOPtgplcMS/wVLx4U8eqHePNvnI0RVLSgoajqprsrSJQ0yNi7MzE5NT0zW5grzi8sLi2XVlYvTZxqAXURq1g3A25AyQjqKFFBM9HAw0BBI7g+zv3GDWgj4+gCBwm0Q34VyZ4UHK3UKZV9hFvMzk5rw07mYx+QDzulCnM9tscYo8xl1T3Lc7J94B1UqeeyESpkjFqn9OZ3Y5GGEKFQ3JiWxxJsZ1yjFAqGRT81kHBxza+gZWnEQzDtbHT8kG5YpUt7sbYVIR2p3ycyHhozCAPbGXLsm99eLv7ltVLsVduZjJIUIRKfi3qpohjTPAnalRoEqoElXGhpb6WizzUXaPMq2hC+PqX/k8st19t12flO5fBoHEeBrJF1skk8sk8OyQmpkToRZEDuySN5cu6cB+fZeflsnXDGM2XyA87rB6wKlXI=</latexit>

MLP✓

<latexit sha1_base64="vC5bj4c5PacK78KB7bCTI/e1ttg="></latexit>

��(R, R0 | S)

<latexit sha1_base64="CrbK2cGpJzfUTmKxxXlAOTkQu3k="></latexit>

� (R, R0 | S)

<latexit sha1_base64="aiQcESSapM2U/tdV5oVteCzL2W0=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgaZn1EZNb0IvHBMwDkiXMTmaT0dnZZWZWCCFf4MWDIl79JG/+jbNJBBUtaCiquunuChLBtcH4w8ktLa+sruXXCxubW9s7xd29lo5TRVmTxiJWnYBoJrhkTcONYJ1EMRIFgrWDu6vMb98zpXksb8w4YX5EhpKHnBJjpUanXyxh18NljDHCLq6ULc/IadWrVpDn4hlKsEC9X3zvDWKaRkwaKojWXQ8nxp8QZTgVbFropZolhN6RIetaKknEtD+ZHTpFR1YZoDBWtqRBM/X7xIREWo+jwHZGxIz0by8T//K6qQkr/oTLJDVM0vmiMBXIxCj7Gg24YtSIsSWEKm5vRXREFKHGZlOwIXx9iv4nrRPXO3dx46xUu1zEkYcDOIRj8OACanANdWgCBQYP8ATPzq3z6Lw4r/PWnLOY2YcfcN4+AQoojRo=</latexit>

X
<latexit sha1_base64="+FVPDRdAD5dEpfSv8iT31/nsUf4=">AAAB6XicdVDLSgNBEOz1GeMr6tHLYBA9LbM+YnILevEYxTwgCWF2MpsMmZ1dZmaFsOQPvHhQxKt/5M2/cTaJoKIFDUVVN91dfiy4Nhh/OAuLS8srq7m1/PrG5tZ2YWe3oaNEUVankYhUyyeaCS5Z3XAjWCtWjIS+YE1/dJX5zXumNI/knRnHrBuSgeQBp8RY6bZ11CsUsevhEsYYYReXS5Zn5LTiVcrIc/EURZij1iu8d/oRTUImDRVE67aHY9NNiTKcCjbJdxLNYkJHZMDalkoSMt1Np5dO0KFV+iiIlC1p0FT9PpGSUOtx6NvOkJih/u1l4l9eOzFBuZtyGSeGSTpbFCQCmQhlb6M+V4waMbaEUMXtrYgOiSLU2HDyNoSvT9H/pHHieucuvjkrVi/nceRgHw7gGDy4gCpcQw3qQCGAB3iCZ2fkPDovzuusdcGZz+zBDzhvn2qAjUs=</latexit>

X 0 <latexit sha1_base64="Ij3jYkiQaeRX9WhWPnGQVHiaxYU=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GjI+arsrunHZgn1AO0gmvW1jM5khyQhl6Be4caGIWz/JnX9jpq2gogcCh3POJfeeIBZcG0I+nNzS8srqWn69sLG5tb1T3N1r6ShRDJosEpHqBFSD4BKahhsBnVgBDQMB7WB8lfnte1CaR/LGTGLwQzqUfMAZNVZq1G+LJeJ6pEwIwcQllbLlGTmtetUK9lwyQwktYPPvvX7EkhCkYYJq3fVIbPyUKsOZgGmhl2iIKRvTIXQtlTQE7aezRaf4yCp9PIiUfdLgmfp9IqWh1pMwsMmQmpH+7WXiX143MYOKn3IZJwYkm380SAQ2Ec6uxn2ugBkxsYQyxe2umI2ooszYbgq2hK9L8f+kdeJ65y5pnJVql4s68ugAHaJj5KELVEPXqI6aiCFAD+gJPTt3zqPz4rzOozlnMbOPfsB5+wT9+Y0S</latexit>

P

<latexit sha1_base64="a+Uanlf1oSVAfY2WszM84D4R7LE=">AAACBnicdVDLSgMxFM3UV62vqksRgkWsUEqmD627oi5cVrAP6NSSSTNtaOZBkhHK2JUbf8WNC0Xc+g3u/BszbQUVPXDhcM693HuPHXAmFUIfRmJufmFxKbmcWlldW99Ib241pB8KQuvE575o2VhSzjxaV0xx2goExa7NadMensV+84YKyXzvSo0C2nFx32MOI1hpqZvetc4pV/g6svyAh3KcbeVaB9DK3Vo5WDvspjMoj47K5VIFxqRQQaWYFE1UPIFmHk2QATPUuul3q+eT0KWeIhxL2TZRoDoRFooRTscpK5Q0wGSI+7StqYddKjvR5I0x3NdKDzq+0OUpOFG/T0TYlXLk2rrTxWogf3ux+JfXDpVT6UTMC0JFPTJd5IQcKh/GmcAeE5QoPtIEE8H0rZAMsMBE6eRSOoSvT+H/pFHIm+U8uixlqqezOJJgB+yBLDDBMaiCC1ADdUDAHXgAT+DZuDcejRfjddqaMGYz2+AHjLdPOW6XrA==</latexit>

��(X, X 0 | P )

<latexit sha1_base64="a+Uanlf1oSVAfY2WszM84D4R7LE="></latexit>

��(X, X 0 | P )

<latexit sha1_base64="lmCcKiA2Ypy9wE1QZq3uGpeByHI=">AAACB3icdZDLSgMxFIYzXmu9jboUJFgEN5ZML1p3RTcuK9gLdMaSSdM2NJMZkoxYhu7c+CpuXCji1ldw59uYaSuo6A+Bn++cw8n5/YgzpRH6sObmFxaXljMr2dW19Y1Ne2u7ocJYElonIQ9ly8eKciZoXTPNaSuSFAc+p01/eJ7WmzdUKhaKKz2KqBfgvmA9RrA2qGPv4evEDSMeq7Hrto8ceutlJyhgwrCOnUN5dFwulyowNYUKKqWm6KDiKXTyaKIcmKnWsd/dbkjigApNOFaq7aBIewmWmhFOx1k3VjTCZIj7tG2swAFVXjK5YwwPDOnCXijNExpO6PeJBAdKjQLfdAZYD9TvWgr/qrVj3at4CRNRrKkg00W9mEMdwjQU2GWSEs1HxmAimfkrJAMsMdEmuqwJ4etS+L9pFPJOOY8uS7nq2SyODNgF++AQOOAEVMEFqIE6IOAOPIAn8GzdW4/Wi/U6bZ2zZjM74Iest0+OWZnE</latexit>

a�

a 

<latexit sha1_base64="BEjXwZsMl/0qYwBZP13BHwF39qY=">AAACB3icdZDLSgMxFIYzXmu9jboUJFgEN5ZML1p3RTcuK9gLdMaSSdM2NJMZkoxYhu7c+CpuXCji1ldw59uYaSuo6A+Bn++cw8n5/YgzpRH6sObmFxaXljMr2dW19Y1Ne2u7ocJYElonIQ9ly8eKciZoXTPNaSuSFAc+p01/eJ7WmzdUKhaKKz2KqBfgvmA9RrA2qGPv+deJG0Y8VmPXbR859NbLTlDAhGEdO4fy6LhcLlVgagoVVEpN0UHFU+jk0UQ5MFOtY7+73ZDEARWacKxU20GR9hIsNSOcjrNurGiEyRD3adtYgQOqvGRyxxgeGNKFvVCaJzSc0O8TCQ6UGgW+6QywHqjftRT+VWvHulfxEiaiWFNBpot6MYc6hGkosMskJZqPjMFEMvNXSAZYYqJNdFkTwtel8H/TKOSdch5dlnLVs1kcGbAL9sEhcMAJqIILUAN1QMAdeABP4Nm6tx6tF+t12jpnzWZ2wA9Zb5+RiJnG</latexit>

b�

b 
<latexit sha1_base64="FIh086jnd2dV1s/cLuLAWnz4HJ4="></latexit>

GED✓,�(G, G0)

<latexit sha1_base64="ys/VvPzavRg4ibQpdTAz5Cb3X/4=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnqyaLwFPegxAbNAMoSeTk/Spmehu0cIIV/gxYMiXv0kb/6NPUkEFX1Q8Hiviqp6Xiy40hh/WJmV1bX1jexmbmt7Z3cvv3/QUlEiKWvSSESy4xHFBA9ZU3MtWCeWjASeYG1vfJX67XsmFY/CWz2JmRuQYch9Tok2UuO6ny9gG59VKuUqSkmxisspKTm4dIEcG89RgCXq/fx7bxDRJGChpoIo1XVwrN0pkZpTwWa5XqJYTOiYDFnX0JAETLnT+aEzdGKUAfIjaSrUaK5+n5iSQKlJ4JnOgOiR+u2l4l9eN9F+1Z3yME40C+likZ8IpCOUfo0GXDKqxcQQQiU3tyI6IpJQbbLJmRC+PkX/k1bRdio2bpQLtctlHFk4gmM4BQfOoQY3UIcmUGDwAE/wbN1Zj9aL9bpozVjLmUP4AevtE/oojQ8=</latexit>

G

<latexit sha1_base64="ys/VvPzavRg4ibQpdTAz5Cb3X/4=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnqyaLwFPegxAbNAMoSeTk/Spmehu0cIIV/gxYMiXv0kb/6NPUkEFX1Q8Hiviqp6Xiy40hh/WJmV1bX1jexmbmt7Z3cvv3/QUlEiKWvSSESy4xHFBA9ZU3MtWCeWjASeYG1vfJX67XsmFY/CWz2JmRuQYch9Tok2UuO6ny9gG59VKuUqSkmxisspKTm4dIEcG89RgCXq/fx7bxDRJGChpoIo1XVwrN0pkZpTwWa5XqJYTOiYDFnX0JAETLnT+aEzdGKUAfIjaSrUaK5+n5iSQKlJ4JnOgOiR+u2l4l9eN9F+1Z3yME40C+likZ8IpCOUfo0GXDKqxcQQQiU3tyI6IpJQbbLJmRC+PkX/k1bRdio2bpQLtctlHFk4gmM4BQfOoQY3UIcmUGDwAE/wbN1Zj9aL9bpozVjLmUP4AevtE/oojQ8=</latexit>

G

<latexit sha1_base64="rOKmAqHfNmVKC5evq5zW/H/w8Xs=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB6Cj1ZNN6CHvQYxSyQDKGn05M06Vno7hHCkD/w4kERr/6RN//GniSCij4oeLxXRVU9NxJcaYw/rMzS8srqWnY9t7G5tb2T391rqTCWlDVpKELZcYliggesqbkWrBNJRnxXsLY7vkz99j2TiofBnZ5EzPHJMOAep0Qb6fbquJ8v4CI+rVYrNZSSUg1XUlK2cfkc2UU8QwEWaPTz771BSGOfBZoKolTXxpF2EiI1p4JNc71YsYjQMRmyrqEB8ZlyktmlU3RklAHyQmkq0Gimfp9IiK/UxHdNp0/0SP32UvEvrxtrr+YkPIhizQI6X+TFAukQpW+jAZeMajExhFDJza2IjogkVJtwciaEr0/R/6RVKtrVIr6pFOoXiziycACHcAI2nEEdrqEBTaDgwQM8wbM1th6tF+t13pqxFjP78APW2ydafo1A</latexit>

G0

<latexit sha1_base64="zAmJutpc6V/29Xw53rFLrw4HHnI="></latexit>

AddNode(•) <latexit sha1_base64="LtdIYnL3g8C7+OaWdt87TYavjg4="></latexit>

AddEdge(•, •)
<latexit sha1_base64="ZP1Ej+WrEhtHHyC1BQFiJ7Ww2zc="></latexit>

AddEdge(•, •)

<latexit sha1_base64="zAmJutpc6V/29Xw53rFLrw4HHnI="></latexit>

AddNode(•)
<latexit sha1_base64="LtdIYnL3g8C7+OaWdt87TYavjg4="></latexit>

AddEdge(•, •)

<latexit sha1_base64="9OXZ5bQXv1dSVDocoEXjZllOS5o=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyaLwFvXhM0CyQDKGnU5O06Vno7hFCyBd48aCIVz/Jm39jTxJBRR8UPN6roqqeFwuuNCEfVmZldW19I7uZ29re2d3L7x+0VJRIBk0WiUh2PKpA8BCammsBnVgCDTwBbW98lfrte5CKR+GtnsTgBnQYcp8zqo3UuOnnC8QmZ5VKuYpTUqySckpKDildYMcmcxTQEvV+/r03iFgSQKiZoEp1HRJrd0ql5kzALNdLFMSUjekQuoaGNADlTueHzvCJUQbYj6SpUOO5+n1iSgOlJoFnOgOqR+q3l4p/ed1E+1V3ysM40RCyxSI/EVhHOP0aD7gEpsXEEMokN7diNqKSMm2yyZkQvj7F/5NW0XYqNmmUC7XLZRxZdISO0Sly0DmqoWtUR03EEKAH9ISerTvr0XqxXhetGWs5c4h+wHr7BAxnjRs=</latexit>

S

<latexit sha1_base64="NIjV1Ko/VFfYiiLdq00h1DKV1Nc=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyaLwFvXhMxCyQDKGnU5O06Vno7hFCyBd48aCIVz/Jm39jTxJBRR8UPN6roqqeFwuuNCEfVmZldW19I7uZ29re2d3L7x+0VJRIBk0WiUh2PKpA8BCammsBnVgCDTwBbW98lfrte5CKR+GtnsTgBnQYcp8zqo3UuOnnC8QmZ5VKuYpTUqySckpKDildYMcmcxTQEvV+/r03iFgSQKiZoEp1HRJrd0ql5kzALNdLFMSUjekQuoaGNADlTueHzvCJUQbYj6SpUOO5+n1iSgOlJoFnOgOqR+q3l4p/ed1E+1V3ysM40RCyxSI/EVhHOP0aD7gEpsXEEMokN7diNqKSMm2yyZkQvj7F/5NW0XYqNmmUC7XLZRxZdISO0Sly0DmqoWtUR03EEKAH9ISerTvr0XqxXhetGWs5c4h+wHr7BArjjRo=</latexit>

R

<latexit sha1_base64="UACpmVlZnwN1/twHp74hXFpTKf4=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB6GnqyaLwFvXiMwSyQDKGn05M06Vno7hFCyB948aCIV//Im39jTxJBRR8UPN6roqqeFwuuNMYfVmZldW19I7uZ29re2d3L7x+0VJRIypo0EpHseEQxwUPW1FwL1oklI4EnWNsbX6d++55JxaPwTk9i5gZkGHKfU6KN1Gic9vMFbOPzSqVcRSkpVnE5JSUHly6RY+M5CrBEvZ9/7w0imgQs1FQQpboOjrU7JVJzKtgs10sUiwkdkyHrGhqSgCl3Or90hk6MMkB+JE2FGs3V7xNTEig1CTzTGRA9Ur+9VPzL6ybar7pTHsaJZiFdLPITgXSE0rfRgEtGtZgYQqjk5lZER0QSqk04ORPC16fof9Iq2k7FxrflQu1qGUcWjuAYzsCBC6jBDdShCRR8eIAneLbG1qP1Yr0uWjPWcuYQfsB6+wRrNY1L</latexit>

R0

<latexit sha1_base64="cmBrn7PyhcRp0q3gdEgZ8KrU2U0="></latexit>

DeleteEdge(•, •)

Figure 1: Top: Example graphs G and G′ are shown with color-coded nodes to indicate alignment
corresponding to the optimal edit path transforming G to G′. Bottom: GRAPHEDX’s GED prediction
pipeline. G and G′ are independently encoded using MPNNθ, and then padded with zero vectors to
equalize sizes, resulting in contextual node representations X,X ′ ∈ RN×d. For each node-pair, the
corresponding embeddings and edge presence information are gathered and fed into MLPθ to obtain
R,R′ ∈ RN(N−1)/2×D. Simultaneously, X,X ′ are fed into PERMNETϕ to obtain the soft node
alignment P (Eq.(18)) which constructs the node-pair alignment matrix S ∈ RN(N−1)/2×N(N−1)/2

as S[(u, v), (u′, v′)] = P [u, u′]P [v, v′]+P [u, v′]P [v, u′]. Finally, X,X ′, P are used to approximate
node insertion and deletion costs, while R,R′, S are used to approximate edge insertion and deletion
costs. The four costs are summed to give the final prediction GEDθ,ϕ(G,G′) (Eq.(9)).

Using Eqs. (3)–(6), we rewrite Eq. (2) as:131

GED(G,G′) = min
P∈PN

a⊖

2

∥∥ReLU (
A− PA′P⊤)∥∥

1,1
+

a⊕

2

∥∥ReLU (
PA′P⊤ −A

)∥∥
1,1

+ b⊖ ∥ReLU (ηG − PηG′)∥1 + b⊕ ∥ReLU (PηG′ − ηG)∥1 . (7)
The first and the second term denote the collective costs of deletion and addition of edges, respectively.132

The third and the fourth terms present a matricized representation of Eqs. (5)- (6). The above problem133

can be viewed as a quadratic assignment problem (QAP) on graphs, given that the hard node134

permutation matrix P has a quadratic involvement in the first two terms. Note that, in general,135

GED(G,G′) ̸= GED(G′, G). However, the optimal edit paths for these two GED values, encoded136

by the respective node permutation matrices, are inverses of each other, as formally stated in the137

following proposition (proven in Appendix D).138

Proposition 1 Given a fixed set of values of b⊖, b⊕, a⊖, a⊕, let P be an optimal node permutation139

matrix corresponding to GED(G,G′), computed using Eq. (7). Then, P ′ = P⊤ is an optimal node140

permutation corresponding to GED(G′, G).141

Connection to different notions of graph matching The above expression of GED can be used142

to represent various notions of graph matching and similarity measures by modifying the edit costs.143

These include graph isomorphism, subgraph isomorphism, and maximum common edge subgraph144

detection. For example, by setting all costs to one, GED(G,G′) = minP
1
2 ||A−PA′P⊤||1+ ||ηG−145

PηG′ ||1, which equals zero only when G and G′ are isomorphic. Further discussion on this topic is146

provided in Appendix D.147

3.2 GRAPHEDX model148

Minimizing the objective in Eq. (7) is a challenging problem. In similar problems, recent methods149

have approximated the hard node permutation matrix P with a soft permutation matrix obtained150

using Sinkhorn iterations on a neural cost matrix. However, the binary nature of the adjacency matrix151

and the pad indicator q still impede the flow of gradients during training. To tackle this problem, we152

make relaxations in two key places within each term in Eq. (7), leading to our proposed GRAPHEDX153

model.154

(1) We replace the binary values in qG, qG′ , A and A′ with real values from node and node-pair155

embeddings: X ∈ RN×d and R ∈ R(
N
2 )×D. These embeddings are computed using a GNN156

guided neural module EMBEDθ with parameter θ. Since the graphs are undirected, R gathers the157

embeddings of the unique node-pairs, resulting in
(
N
2

)
rows instead of N2.158
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(2) We substitute the hard node permutation matrix P with a soft alignment matrix, generated using159

a differentiable alignment planner PERMNETϕ with parameter ϕ. Here, P is a doubly stochastic160

matrix, with P [u, u′] indicating the "score" or "probability" of aligning u 7→ u′. Additionally,161

we also compute the corresponding node-pair alignment matrix S.162

Using these relaxations, we approximate the four edit costs in Eq. (7) with four continuous set163

distance surrogate functions.164 ∥∥ReLU (
A− PA′P⊤)∥∥

1,1
→ ∆⊖(R,R′ |S),

∥∥ReLU (
PA′P⊤ −A

)∥∥
1,1
→ ∆⊕(R,R′ |S),

∥ReLU (ηG − PηG′)∥1 → ∆⊖(X,X ′ |P ), ∥ReLU (PηG′ − ηG)∥1 → ∆⊕(X,X ′ |P ). (8)
This gives us an approximated GED parameterized by θ and ϕ.165

GEDθ,ϕ(G,G′) = a⊖∆⊖(R,R′ |S) + a⊕∆⊕(R,R′ |S)
+ b⊖∆⊖(X,X ′ |P ) + b⊕∆⊕(X,X ′ |P ). (9)

Note that since R and R′ contain the embeddings of each node-pair only once, there is no need to166

multiply 1/2 in the first two terms, unlike Eq. (7). Next, we propose three types of neural surrogates167

to approximate each of the four operations.168

(1) AlignDiff Given the node-pair embeddings R and R′ for the graph pairs G and G′, we apply the169

soft node-pair alignment S to R′. We then define the edge edits in terms of asymmetric differences170

between R and SR′, which serves as a replacement for the corresponding terms in Eq. (7). We write171

∆⊖(R,R′ |S) and ∆⊕(R,R′ |S) as:172

∆⊖(R,R′ |S) = ∥ReLU (R− SR′)∥1,1 , ∆⊕(R,R′ |S) = ∥ReLU (SR′ −R)∥1,1 . (10)
Similarly, for the node edits, we can compute ∆⊖(X,X ′ |P ) and ∆⊕(X,X ′ |P ) as:173

∆⊖(X,X ′ |P ) = ∥ReLU (X − PX ′)∥1,1 , ∆⊕(X,X ′ |P ) = ∥ReLU (PX ′ −X)∥1,1 . (11)

(2) DiffAlign In Eq. (10), we first aligned R′ using S and then computed the difference from R.174

Instead, here we first computed the pairwise differences between R′ and R for all pairs of node-pairs175

(e, e′), and then combine these differences with the corresponding alignment scores S[e, e′]. We176

compute the edge edit surrogates ∆⊖(R,R′ |S) and ∆⊕(R,R′ |S) as:177

∆⊖(R,R′ |S) =
∑
e,e′

∥ReLU (R[e, :]−R′[e′, :])∥1 S[e, e′], (12)

∆⊕(R,R′ |S) =
∑
e,e′

∥ReLU (R′[e′, :]−R[e, :])∥1 S[e, e′]. (13)

Here, e and e′ represent node-pairs, which are not necessarily edges. When the node-178

pair alignment matrix S is a hard permutation, ∆⊕ and ∆⊖ remain the same across179

AlignDiff and DiffAlign (as shown in Appendix D). Similar to Eqs. (12)—(13), we can com-180

pute ∆⊖(X,X ′ |P ) =
∑

u,u′ ∥ReLU (X[u, :]−X ′[u′, :])∥1 P [u, u′] and ∆⊕(X,X ′ |P ) =181 ∑
u,u′ ∥ReLU (X ′[u′, :]−X[u, :])∥1 P [u, u′].182

(3) XOR-DiffAlign As indicated by the combinatorial formulation of GED in Eq. (7), the edit183

cost of a particular node-pair is non-zero only when an edge is mapped to a non-edge or vice-versa.184

However, the surrogates for the edge edits in AlignDiff or DiffAlign fail to capture this condition185

because they can assign non-zero costs to the pairs (e = (u, v), e′ = (u′, v′)) even when both e186

and e′ are either edges or non-edges. To address this, we explicitly discard such pairs from the187

surrogates defined in Eqs. (12)–(13). This is ensured by applying a XOR operator J
(
·, ·

)
between188

the corresponding entries in the adjacency matrices, i.e., A[u, v] and A′[u′, v′], and then multiplying189

this result with the underlying term. Hence, we write:190

∆⊖(R,R′ |S) =
∑

e=(u,v)

∑
e′=(u′,v′)

J
(
A[u, v], A′[u′, v′]

)
∥ReLU (R[e, :]−R′[e′, :])∥1 S[e, e′], (14)

∆⊕(R,R′ |S) =
∑

e=(u,v)

∑
e′=(u′,v′)

J
(
A[u, v], A′[u′, v′]

)
∥ReLU (R′[e′, :]−R[e, :])∥1 S[e, e′]. (15)

Similarly, the cost contribution for node operations arises from mapping a padded node to191

a non-padded node or vice versa. We account for this by multiplying J(ηG[u], ηG′ [u′])192

with each term of ∆⊖(X,X ′ |P ) and ∆⊕(X,X ′ |P ) computed using DiffAlign. Hence, we193

compute ∆⊖(X,X ′ |P ) =
∑

u,u′ J(ηG[u], ηG′ [u′]) ∥ReLU (X[u, :]−X ′[u′, :])∥1 P [u, u′] and194

∆⊕(X,X ′ |P ) =
∑

u,u′ J(ηG[u], ηG′ [u′]) ∥ReLU (X ′[u′, :]−X[u, :])∥1 P [u, u′].195

5



Comparison between AlignDiff, DiffAlign and XOR-DiffAlign AlignDiff and DiffAlign be-196

come equivalent when S is a hard permutation. However, when S is doubly stochastic, the above197

three surrogates, AlignDiff, DiffAlign and XOR-DiffAlign, are not equivalent. As we move from198

AlignDiff to DiffAlign to XOR-DiffAlign, we increasingly align the design to the inherent inductive199

biases of GED, thereby achieving a better representation of its cost structure.200

Suppose we are computing the GED between two isomorphic graphs, G and G′, with equal costs201

for all edit operations. In this scenario, we ideally expect a neural network to consistently output202

a zero cost. Now consider a proposed soft alignment S which is close to the optimal alignment.203

Under the AlignDiff design, the aggregated value
∑

e′ S[e, e
′]R[e′, :] — where e and e′ represent two204

edges matched in the optimal alignment — can accumulate over the large number of N(N − 1)/2205

node-pairs. This aggregation leads to high values of ||R[e, :]− SR′[e′, :]||1, implying that AlignDiff206

captures an aggregate measure of the cost incurred by spurious alignments, but cannot disentangle207

the effect of individual misalignments. This makes it difficult for AlignDiff to learn the optimal208

alignment.209

In contrast, the DiffAlign approach, which relies on pairwise differences between embeddings to210

explicitly guide S towards the optimal alignment, significantly ameliorates this issue. For example,211

in the aforementioned setting of GED with equal costs, the cost associated with each pairing (e, e′)212

is explicitly encoded using ||R[e, :] − R′[e′, :]||1 , and is explicitly set to zero for pairs that are213

correctly aligned. Moreover, this representation allows DiffAlign to isolate the cost incurred by each214

misalignment, making it easier to train the model to reduce the cost of these spurious matches to zero.215

However, DiffAlign does not explicitly set edge-to-edge and non-edge-to-non-edge mapping costs to216

zero, potentially leading to inaccurate GED estimates. XOR-DiffAlign addresses these concerns by217

applying a XOR of the adjacency matrices to the cost matrix, ensuring that non-zero cost is computed218

only when mapping an edge to a non-edge or vice versa. This resolves the issues in both AlignDiff and219

DiffAlign by focusing on mismatches between edges and non-edges, while disregarding redundant220

alignments that do not contribute to the GED.221

Amenability to indexing and approximate nearest neighbor (ANN) search. All of the aforemen-222

tioned distance surrogates are based on a late interaction paradigm, where the embeddings of G and223

G′ are computed independently of each other before computing the distances ∆. This is particularly224

useful in the context of graph retrieval, as it allows for the corpus graph embeddings to be indexed225

a-priori, thereby enabling efficient retrieval of relevant graphs for new queries.226

When the edit costs are equal, our predicted GED (9) becomes symmetric with respect to G and G′.227

In such cases, DiffAlign and AlignDiff yield a structure similar to the Wasserstein distance induced228

by L1 norm. This allows us to leverage ANN techniques like Quadtree or Flowtree [4]. However,229

while the presence of the XOR operator J within each term in Eq. (14) – (15) of XOR-DiffAlign230

enhances the interaction between G and G′, this same feature prevents XOR-DiffAlign from being231

cast to an ANN-amenable setup, unlike DiffAlign and AlignDiff.232

3.3 Network architecture of EMBEDθ and PERMNETϕ233

In this section, we present the network architectures of the two components of GRAPHEDX, viz.,234

EMBEDθ and PERMNETϕ, as introduced in items (1) and (2) in Section 3.2. Notably, in our proposed235

graph representation, non-edges and edges alike are embedded as non-zero vectors. In other words,236

all node-pairs are endowed with non-trivial embeddings. We then explain the design approach for237

edge-consistent node alignment.238

Neural architecture of EMBEDθ EMBEDθ consists of a message passing neural network MPNNθ239

and a decoupled neural module MLPθ. Given the graphs G,G′, MPNNθ with K propa-240

gation layers is used to iteratively compute the node embeddings
{
xK(u) ∈ Rd |u ∈ V

}
and241 {

x′
K(u) ∈ Rd |u ∈ V ′}, then collect them into X and X ′ after padding, i.e.,242

X := {xK(u) |u ∈ [N ]} = MPNNθ(G), X ′ := {x′
K(u′) |u′ ∈ [N ]} = MPNNθ(G

′). (16)
The optimal alignment S is highly sensitive to the global structure of the graph pairs, i.e., S[e, e′]243

can significantly change when we perturb G or G′ in regimes distant from e or e′. Conventional244

representations mitigate this sensitivity while training models, by setting non-edges to zero, rendering245

them invariant to structural changes. To address this limitation, we utilize more expressive graph246

representations, where non-edges are also embedded using trainable non-zero vectors. This approach247

allows information to be captured from the structure around the nodes through both edges and248
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non-edges, thereby enhancing the representational capacity of the embedding network. For each249

node-pair e = (u, v) ∈ G (and equivalently (v, u)), and e′ = (u′, v′) ∈ G′, the embeddings of the250

corresponding nodes and their connectivity status are concatenated, and then passed through an MLP251

to obtain the embedding vectors r(e), r′(e′) ∈ RD. For e = (u, v) ∈ G, we compute r(e) as follows:252

r(e) = MLPθ(xK(u) ||xK(v) ||A[u, v]) + MLPθ(xK(v) ||xK(u) ||A[v, u]). (17)
We can compute r′(e) in similar manner. The property r((u, v)) = r((v, u)) reflects the undirected253

property of graph. Finally, the vectors r(e) and r′(e′) are stacked into matrices R and R′, both with254

dimensions R(
N
2 )×D. We would like to highlight that r((u, v)) or r′((u′, v′)) are computed only255

once for all node-pairs, after the MPNN completes its final Kth layer of execution. The message256

passing in the MPNN occurs only over edges. Therefore, this approach does not significantly increase257

the time complexity.258

Neural architecture of PERMNETϕ The network PERMNETϕ provides P as a soft node alignment259

matrix by taking the node embeddings as input, i.e., P = PERMNETϕ(X,X ′). PERMNETϕ is260

implemented in two steps. In the first step, we apply a neural network cϕ on both xK and x′
K ,261

and then compute the normed difference between their outputs to construct the matrix C, where262

C[u, u′] = ∥cϕ (xK(u))− cϕ (x
′
K(u′))∥1. Next, we apply iterative Sinkhorn normalizations [16, 35]263

on exp(−C/τ), to obtain a soft node alignment P . Therefore,264

P = Sinkhorn
([

exp
(
−∥cϕ (xK(u))− cϕ (x

′
K(u′))∥1 /τ

)]
(u,u′)∈[N ]×[N ]

)
. (18)

Here, τ is a temperature hyperparameter. In a general cost setting, GED is typically asymmetric,265

so it may be desirable for C[u, u′] to be asymmetric with respect to x and x′. However, as noted266

in Proposition 1, when we compute GED(G′, G), the alignment matrix P ′ = PERMNETϕ(X
′, X)267

should satisfy the condition that P ′ = P⊤, where P is computed from Eq. (18). The current form of268

C supports this condition, whereas an asymmetric form might not, as shown in Appendix D.269

We construct S ∈ R(
N
2 ) × R(

N
2 ) as follows. Each pair of nodes (u, v) in G and (u′, v′) in G′ can270

be mapped in two ways, regardless of whether they are edges or non-edges: (1) node u 7→ u′ and271

v 7→ v′ which is denoted by P [u, u′]P [v, v′]; (2) node u 7→ v′ and v 7→ u′, which is denoted272

by P [u, v′]P [v, u′] Combining these two scenarios, we compute the node-pair alignment matrix S273

as: S[(u, v), (u′, v′)] = P [u, u′]P [v, v′] + P [u, v′]P [v, u′]. This explicit formulation of S from P274

ensures mutually consistent permutation across nodes and node-pairs.275

4 Experiments276

We conduct extensive experiments on GRAPHEDX to showcase the effectiveness of our method277

across several real-world datasets, under both equal and unequal cost settings for GED. Additiional278

experimental results can be found in Appendix F.279

4.1 Setup280

Datasets We experiment with seven real-world datasets: Mutagenicity (Mutag) [18], Ogbg-Code2281

(Code2) [23], Ogbg-Molhiv (Molhiv) [23], Ogbg-Molpcba (Molpcba) [23], AIDS [36], Linux [5] and282

Yeast [36]. For each dataset’s training, test and validation sets Dsplit, we generate
(|Dsplit|

2

)
+ |Dsplit|283

graph pairs, considering combinations between every two graphs, including self-pairing. We calculate284

the exact ground truth GED using the F2 solver [29], implemented within GEDLIB [10]. For GED285

with equal cost setting, we set the cost values to b⊖ = b⊕ = a⊖ = a⊕ = 1. For GED with unequal286

cost setting, we use b⊖ = 3, b⊕ = 1, a⊖ = 2, a⊕ = 1. Further details on dataset generation and287

statistics are presented in Appendix E. In the main paper, we present results for the first five datasets288

under both equal and unequal cost settings for GED. Additional experiments for Linux and Yeast, as289

well as GED with node label substitutions, are presented in Appendix F.290

Baselines We compare our approach with nine state-of-the-art methods. These include two variants291

of GMN [31]: (1) GMN-Match and (2) GMN-Embed; (3) ISONET [43], (4) GREED [40], (5)292

ERIC [55], (6) SimGNN [5], (7) H2MN [53], (8) GraphSim [6] and (9) EGSC [39]. To compute293

the GED, GMN-Match, GMN-Embed, and GREED use the Euclidean distance between the vector294

representation of two graphs. ISONET uses an asymmetric distance specifically tailored to subgraph295

isomorphism. H2MN is an early interaction network that utilizes higher-order node similarity through296

hypergraphs. ERIC, SimGNN, and EGSC leverage neural networks to calculate the distance between297

two graphs. Furthermore, the last three methods predict a score based on the normalized GED in the298
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GED with equal cost GED with unequal cost
Mutag Code2 Molhiv Molpcba AIDS Mutag Code2 Molhiv Molpcba AIDS

GMN-Match [31] 0.797 1.677 1.318 1.073 0.821 69.210 13.472 76.923 23.985 31.522
GMN-Embed [31] 1.032 1.358 1.859 1.951 1.044 72.495 13.425 78.254 28.437 33.221
ISONET [43] 1.187 0.879 1.354 1.106 1.640 3.369 3.025 3.451 2.781 5.513
GREED [40] 1.398 1.869 1.708 1.550 1.004 68.732 11.095 78.300 26.057 34.354
ERIC [55] 0.719 1.363 1.165 0.862 0.731 1.981 12.767 3.377 2.057 1.581
SimGNN [5] 1.471 2.667 1.609 1.456 1.455 4.747 5.212 4.145 3.465 4.316
H2MN [53] 1.278 7.240 1.521 1.402 1.114 3.413 9.435 3.782 3.396 3.105
GraphSim [6] 2.005 3.139 2.577 1.656 1.936 5.370 7.405 6.643 3.928 5.266
EGSC [39] 0.765 4.165 1.138 0.938 0.627 1.758 3.957 2.371 2.133 1.693
GRAPHEDX 0.492 0.429 0.781 0.764 0.565 1.134 1.478 1.804 1.677 1.252

Table 2: Prediction error measured in terms of MSE of GRAPHEDX and all the state-of-the-art base-
lines across five datasets on 20% test set, for GED with equal costs and unequal costs. For GED with
equal (unequal) costs we have b⊖ = b⊕ = a⊖ = a⊕ = 1 (b⊖ = 3, b⊕ = 1, a⊖ = 2, a⊕ = 1.) We
select ∆⊖(R,R′ |S),∆⊕(R,R′ |S) and ∆⊖(X,X ′ |P ),∆⊕(X,X ′ |P ) from the cartesian space
of Edge-{AlignDiff,DiffAlign,XOR-DiffAlign}× Node-{AlignDiff,DiffAlign,XOR-DiffAlign}
through cross validation. Green ( yellow) numbers report the best (second best) performers.

form of exp (−2GED(G,G′)/(|V |+ |V ′|)). Notably, none of these baseline approaches have been299

designed to incorporate unequal edit costs into their models. To address this limitation, when working300

with GED under unequal cost setting, we include the edit costs as initial features in the graphs for all301

baseline models.302

Evaluation Given a dataset D = {(Gi, G
′
i,GED(Gi, G

′
i))}i∈[n], we divide it into training, vali-303

dation and test folds with a split ratio of 60:20:20. We train the models using the Mean Squared304

Error (MSE) between the predicted GED and the ground truth GED as the loss. For model evaluation,305

we calculate the Mean Squared Error (MSE) between the actual and predicted GED on the test set.306

For ERIC, SimGNN and EGSC, we rescale the predicted score to obtain the true (unscaled) GED307

as GED(G,G′) = −(|V |+ |V |′) log(s)/2. In Appendix F, we also report Kendall’s Tau (KTau) to308

evaluate the rank correlation across different experiments.309

Selection of ∆•(X,X ′ |P ) and ∆•(R,R′ |S) We have three neural distance surrogates to choose310

from — AlignDiff, DiffAlign and XOR-DiffAlign — for both edge and node edits, resulting in nine311

possible combinations. We experiment with each of these nine combinations and select the one with312

the lowest validation error. However, as we will see later, the best performing surrogates always313

incorporate XOR-DiffAlign for edge edits. Consequently, one can limit the cross validation to only314

three surrogates for node edits, while using XOR-DiffAlign as the fixed surrogate for edge edits.315

4.2 Results316

Comparison with baselines We start by comparing the performance of GRAPHEDX against all317

state-of-the-art baselines for GED with both equal and unequal costs. Table 2 summarizes the results.318

We make the following observations. (1) GRAPHEDX outperforms all the baselines by a significant319

margin. For GED with equal costs, this margin often goes as high as 15%. This advantage becomes320

even more pronounced for GED with unequal costs, where our method outperforms the baselines by321

a margin as high as 30%, as seen in Code2. (2) There is no clear second-best method. Among the322

baselines, EGSC and ERIC each outperforms the others in two out of five datasets for both equal and323

unequal cost settings. Also, EGSC demonstrates competitive performance in AIDS.324

Impact of cost-guided GED Among the baselines, GMN-Match, GMN-Embed and GREED325

compute GED using the euclidean distance between the graph embeddings, i.e., GED(G,G′) =326

∥xG − xG′∥2, whereas we compute it by summing the set distance surrogates between the node327

and edge embedding sets. To understand the impact of our cost guided distance, we adapt it328

to the graph-level embeddings used by the above three baselines as follows: GED(G,G′) =329

b⊖+a⊖

2 ∥ReLU (xG − xG′)∥1 + b⊕+a⊕

2 ∥ReLU (xG′ − xG)∥1. Table 3 summarizes the results in330

terms of MSE, which shows that (1) cost guided distance reduces the MSE by a significant margin331

in most cases; (2) even in the setting of GED with equal costs, our set divergence formulation is a332

better surrogate compared to the baselines (3) the margin of improvement is more prominent with333

GED involving unequal costs, where the modeling of specific cost values is crucial (4) GRAPHEDX334

outperforms the baselines even after changing their default distance to our cost guided distance.335

Benefits of all node-pairs representation In this section, we compare the performance of using336

graph representation with two variants of our method. (i) Edge-only (edge → edge): Here, R,R′337
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Equal cost Unequal cost
Mutag Code2 Molhiv Mutag Code2 Molhiv

GMN-Match 0.797 1.677 1.318 69.210 13.472 76.923
GMN-Match * 0.654 0.960 1.008 1.592 2.906 2.162
GMN-Embed 1.032 1.358 1.859 72.495 13.425 78.254
GMN-Embed * 1.011 1.179 1.409 2.368 3.272 3.413
GREED 1.398 1.869 1.708 68.732 11.095 78.300
GREED * 2.133 1.850 1.644 2.456 5.429 3.827
GRAPHEDX 0.492 0.429 0.781 1.134 1.478 1.804

Table 3: Impact of cost guided distance in terms
of MSE; * represents the variant of the baseline
with cost-guided distance. Green (bold) shows
the best among all methods (only baselines).

Equal cost Unequal cost
Mutag Code2 Molhiv Mutag Code2 Molhiv

Edge-only
(edge→ edge) 0.566 0.683 0.858 1.274 1.817 1.847
Edge-only
(pair→ pair) 0.596 0.760 0.862 1.276 1.879 1.865

GRAPHEDX 0.492 0.429 0.781 1.134 1.478 1.804

Table 4: Benefits of all node-pair representation
MSE using only edges vs. all node-pair represen-
tations. Green (yellow) indicate the best (second
best) performers.

∈ Rmax(|E|,|E′|)×D are computed using only the embeddings of node-pairs that are edges, and338

excluding non-edges. This means that S becomes an edge-to-edge alignment matrix instead of a339

full node-pair alignment matrix. (ii) Edge-only (pair→ pair): In this variant, S remains a node-pair340

alignment matrix, but the embeddings of the non-edges in R,R′ ∈ RN(N−1)/2×D are explicitly set341

to zero. In Table 4, we report the results in terms of MSE, which show that (1) both these sparse342

representations perform significantly worse compared to our method using non-trivial representations343

for both edges and non-edges, and (2) Edge-only (edge → edge) performs better than Edge-only344

(pair→ pair). This underscores the importance of explicitly modeling trainable non-edge embeddings345

to capture the sensitivity of GED to global graph structure.346

Comparison across nine distances Here, we compare among the nine different combinations of our347

neural distance surrogates. Table 5 shows that the best combination mostly share the XOR-DiffAlign348

on the edge edit. This is because, XOR-DiffAlign offers more inductive bias, by zeroing the edit cost349

of aligning an edge to edge and a non-edge to non-edge, as we discussed in Section 3.2. There is no350

winner between AlignDiff and DiffAlign.
Equal cost Unequal cost

Edge edit Node edit Mutag Code2 Mutag Code2
DiffAlign DiffAlign 0.579 0.740 1.205 2.451
DiffAlign AlignDiff 0.557 0.742 1.211 2.116
DiffAlign XOR 0.538 0.719 1.146 1.896
AlignDiff DiffAlign 0.537 0.513 1.185 1.689
AlignDiff AlignDiff 0.578 0.929 1.338 1.488
AlignDiff XOR 0.533 0.826 1.196 1.741
XOR AlignDiff 0.492 0.429 1.134 1.478
XOR DiffAlign 0.510 0.634 1.148 1.489
XOR XOR 0.530 1.588 1.195 2.507

Table 5: Comparison among the nine neural dis-
tance combinations. Green (yellow) indicate the
best (second best) performers in terms of MSE.

Mutag Code2 Molhiv Molpcba AIDS
GMN-Match 1.057 5.224 1.388 1.432 0.868
GMN-Embed 2.159 4.070 3.523 4.657 1.818
ISONET 0.876 1.129 1.617 1.332 1.142
GREED 2.876 4.983 2.923 3.902 2.175
ERIC 0.886 6.323 1.537 1.278 1.602
SimGNN 1.160 5.909 1.888 2.172 1.418
H2MN 1.277 6.783 1.891 1.666 1.290
GraphSim 1.043 4.708 1.817 1.748 1.561
EGSC 0.776 8.742 1.273 1.426 1.270
GRAPHEDX 0.441 0.820 0.792 0.846 0.538

Table 6: MSE for different methods with unit
node substitution cost in equal cost setting.
Green (yellow) show (second) best method.

351

Performance for GED under node substitution cost The scoring function in Eq. 9 can also be352

extended to incorporate node label substitution cost, which has been described in Appendix D. Here,353

we compare the performance of our model with the baselines in terms of MSE where we include354

node substitution cost b∼, with cost setting as b⊖ = b⊕ = b∼ = a⊖ = a⊕ = 1. In Table 6, we report355

the results across 5 datasets equipped with node labels, passed as one-hot encoded node features. We356

observe that (1) our model outperforms all other baselines across all datasets by significant margin;357

(2) there is no clear second winner but ERIC, EGSC and ISONET performs better than the others.358

5 Conclusion359

Our work introduces a novel neural model for computing GED that explicitly incorporates general360

costs of edit operations. By leveraging graph representations that recognize both edges and non-edges,361

together with the design of suitable set distance surrogates, we achieve a more robust neural surrogate362

for GED. Our experiments demonstrate that this approach outperforms state-of-the-art methods,363

especially in settings with general edit costs, providing a flexible and effective solution for a range364

of applications. A potential limitation is that real-world applications often involve richly attributed365

graphs, where relevance based on GED might require separate formulations for modeling the structure366

of edit operations and the similarity of all node-pair features. Future work could focus on developing367

specialized formulations that integrate domain-specific knowledge, that improve effectiveness of368

GED-based graph comparison across various domains.369
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Graph Edit Distance with General Costs522

Using Neural Set Divergence523

(Appendix)524

A Limitations525

Our neural model for GED affords significant improvements in accuracy and flexibility for modeling526

edit costs. However, there are some limitations to consider.527

(1) While computing graph representations over
(
N
2

)
×

(
N
2

)
node-pairs does not require additional528

parameters due to parameter-sharing, it does demand significant memory resources. This could pose529

challenges, especially with larger-sized graphs.530

(2) The assumption of fixed edit costs across all graph pairs within a dataset might not reflect real-531

world scenarios where costs vary based on domain-specific factors and subjective human relevance532

judgements. This calls for more specialized approaches to accurately model the impact of each edit533

operation, which may differ across node pairs.534

(3) the current model may not adequately address richly attributed graphs with complex node and535

edge features. Incorporating such attributes alongside graph structure based GED computation may536

require further exploration.537

B Broader impact538

Graphs serve as powerful representations across diverse domains, capturing complex relationships539

and structural notions inherent in various systems. From biological networks to social networks,540

transportation networks, and supply chains, graphs provide a versatile framework for modeling541

interactions between interconnected entities. In domains where structure-similarity based applications542

are prevalent, GED emerges as a valuable and versatile tool.543

For example, in bio-informatics, molecular structures can naturally be represented as graphs. GED544

computation expedites tasks such as drug discovery, protein-protein interaction modeling, and545

molecular similarity analysis by identifying structurally similar molecular compounds. Similarly,546

in social network analysis, GED can measure similarities between user interactions, aiding in547

friend recommendation systems or community detection tasks. In transportation networks, GED-548

based tools assess similarity between road networks for route planning or traffic optimizations.549

Further applications include learning to edit scene graphs, analyzing gene regulatory pathways, fraud550

detection, and more551

Moreover, our proposed variations of GED, particularly those amenable to hashing, find utility in552

retrieval based setups. In various information retrieval systems, hashed graph representations can be553

used to efficiently index and retrieve relevant items using our GED based scores. Such applications554

include image retrieval from image databases where images are represented as scene graphs, retrieval555

of relevant molecules from molecular databases, etc.556

Furthermore, our ability to effectively model different edit costs in GED opens up new possibilities557

in various applications. In recommendation systems, it can model user preferences of varying558

importance, tailoring recommendations based on user-specific requirements or constraints. Similarly,559

in image or video processing, different types of distortions may have varying impacts on perceptual560

quality, and GED with adaptive costs can better assess similarity. In NLP tasks such as text similarity561

understanding and document clustering, assigning variable costs to textual edits corresponding to562

word insertion, deletions or substitutions, provides a more powerful framework for measuring textual563

similarity, improving performance in downstream tasks such as plagiarism detection, summarization,564

etc.565

Lastly, and most importantly, the design of our model encourages interpretable alignment-driven566

justifications, thereby promoting transparency and reliability while minimizing potential risks and567

negative impacts, in high stake applications like drug discovery.568
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C Discussion on related work569

Heuristics for Graph Edit Distance GED was first introduced in [45]. Bunke and Allermann570

[14] used it as a tool for non exact graph matching. Later on, [13] connected GED with maximum571

common subgraph estimation. Blumenthal [7] provide an excellent survey. As they suggest,572

combinatorial heuristics to solve GED predominantly follows three approaches: (1) Linear sum573

assignment problem with error-correction, which include [27, 41, 52, 54] (2) Linear programming,574

which predominantly uses standard tools like Gurobi, (3) Local search [42]. However, they can be575

extremely time consuming, especially for a large number of graph pairs. Among them Zheng et al.576

[54] operate in our problem setting, where the cost of edits are different across the edit operations,577

but for the same edit operation, the cost is same across node or node pairs.578

Optimal transport In our work, we utilize Graph Neural Networks (GNNs) to represent each graph579

as a set of node embeddings. This transforms the inherent Quadratic Assignment Problem (QAP)580

of graph matching into a Linear Sum Assignment Problem (LSAP) on the sets of node embeddings.581

Essentially, this requires solving an optimal transport problem in the node embedding space. The use582

of neural surrogates for optimal transport was first proposed by Cuturi [16], who introduced entropy583

regularization to make the optimal transport objective strictly convex and utilized Sinkhorn iterations584

[49] to obtain the transport plan. Subsequently, Mena et al. [35] proposed the neural Gumbel Sinkhorn585

network as a continuous and differentiable surrogate of a permutation matrix, which we incorporate586

into our model.587

In various generative modeling applications, optimal transport costs are used as loss functions, such588

as in Wasserstein GANs [1, 3]. Computing the optimal transport plan is a significant challenge,589

with approaches leveraging the primal formulation [51, 33], the dual formulation with entropy590

regularization [17, 47, 22], or Input Convex Neural Networks (ICNNs) [2].591

Neural graph similarity computation Most earlier works on neural graph similarity computation592

have focused on training with GED values as ground truth [5, 6, 19, 40, 55, 39, 53, 31], while some593

have used MCS as the similarity measure [6, 5]. Current neural models for GED approximation594

primarily follow two approaches. The first approach uses a trainable nonlinear function applied to595

graph embeddings to compute GED [5, 39, 6, 55, 53, 19]. The second approach calculates GED596

based on the Euclidean distance in the embedding space [31, 40].597

Among these models, GOTSIM [19] focuses solely on node insertion and deletion, and computes598

node alignment using a combinatorial routine that is decoupled from end-to-end training. However,599

their network struggles with training efficiency due to the operations on discrete values, which600

are not amenable to backpropagation. With the exception of GREED [40] and Graph Embedding601

Network (GEN) [31], most methods use early interaction or nonlinear scoring functions, limiting602

their adaptability to efficient indexing and retrieval pipelines603
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D Discussion on our proposed formulation of GED604

D.1 Modification of scoring function from label substitution605

To incorporate the effect of node substitution into account when formulating the GED, we first606

observe that the effect of node substitution cost b∼ only comes into account when a non-padded607

node maps to a non-padded node. In all other cases, when a node is deleted or inserted, we do not608

additionally incur any substitution costs. Note that, we consider the case when node substitution609

cannot be replaced by node addition and deletion, i.e., b∼ ≤ b⊖ + b⊕. Such a constraint on costs610

has uses in multiple applications [9, 38]. Let L denote the set of node labels, and ℓ(u), ℓ′(u′) ∈ L611

denote the node label corresponding to nodes u and u′ in G and G′ respectively. We construct the612

node label matrix L for G as follows: L ∈ {0, 1}N×|L|, such that L[i, :] = one_hot(ℓ(i)), i.e., L is613

the one-hot indicator matrix for the node labels, which each row corresponding to the one-hot vector614

of the label. Similarly, we can construct L′ for G′. Then, the distance between labels of two nodes615

u ∈ V and u′ ∈ V ′ can be given as ∥L[u, :]− L′[u′, :]∥1. To ensure that only valid node to node616

mappings contribute to the cost, we multiply the above with Λ(u, u′) = AND(ηG[u], ηG′ [u′]). This617

allows us to write the expression for GED with node label substitution cost as618

GED(G,G′) = min
P∈PN

a⊖

2

∥∥ReLU (
A− PA′P⊤)∥∥

1,1
+

a⊕

2

∥∥ReLU (
PA′P⊤ −A

)∥∥
1,1

+ b⊖ ∥ReLU (PqG′ − qG)∥1 + b⊕ ∥ReLU (qG − PqG′)∥1
+ b∼

∑
u,u′

Λ(u, u′) ∥L[u, :]− L[u′, :]∥1 P [u, u′]︸ ︷︷ ︸
∆∼(L,L′|P )

We can design a neural surrogate for above in the same way as done in Section 3.2, and write619

GEDθ,ϕ(G,G′) = a⊖∆⊖(R,R′ |S) + a⊕∆⊕(R,R′ |S)
+ b⊖∆⊖(X,X ′ |P ) + b⊕∆⊕(X,X ′ |P )

+ b∼∆∼(L,L′|P ) (19)
In this case, to account for node substitutions in the proposed permutation, we use L[u, :] and L′[u′, :]620

as the features for node u in G and node u′ in G′, respectively. We present the comparison of our621

method including subsitution cost with state-of-the-art baselines in Appendix F.622

D.2 Proof of Proposition 1623

Proposition Given a fixed set of values of b⊖, b⊕, a⊖, a⊕, let P be an optimal node permutation624

matrix corresponding to GED(G,G′), computed using Eq. (7). Then, P ′ = P⊤ is an optimal node625

permutation corresponding to GED(G′, G).626

Proof: Noticing that ReLU (c− d) = max(c, d)− d, we can write627 ∥∥ReLU (
A− PA′P⊤)∥∥

1,1
=

∥∥max(A,PA′P⊤)− PA′P⊤∥∥
1,1

=
∥∥max(A,PA′P⊤)

∥∥
1,1
− 2|E′|

The last equality follows since max(A,PA′P⊤) ≥ PA′P⊤ element-wise, and
∥∥PA′P⊤∥∥

1,1
=628

∥A′∥1,1 = 2|E′|. Similarly, we can rewrite
∥∥ReLU (

PA′P⊤ −A
)∥∥

1,1
, ∥ReLU (ηG − PηG′)∥1,629

and ∥ReLU (PηG′ − qG)∥1, and finally rewrite Eq. (7) as630

GED(G,G′) = min
P∈PN

a⊕ + a⊖

2

∥∥max(A,PA′P⊤)
∥∥
1,1
− a⊖|E′| − a⊕|E|

+
b⊕ + b⊖

2
∥max(ηG, PηG′ )∥1 − b⊖|V ′| − b⊕|V |

(20)

631

GED(G′, G) = min
P∈PN

a⊕ + a⊖

2

∥∥max(A′, PAP⊤)
∥∥
1,1
− a⊖|E| − a⊕|E′|

+
b⊕ + b⊖

2
∥max(ηG′ , PηG )∥1 − b⊖|V | − b⊕|V ′|

(21)

632
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We can rewrite the max term as follows:633 ∥∥max(A,PA′P⊤)
∥∥
1,1

=
∑
u,v

max(A,PA′P⊤)[u, v]

=
∑
u,v

max(PP⊤APP⊤, PA′P⊤)[u, v]

=
∑
u,v

P max(P⊤AP,A′)P⊤[u, v]

=
∑
u,v

max(P⊤AP,A′)[u, v]

=
∥∥max(P⊤AP,A′)

∥∥
1,1

=
∥∥max(A′, P⊤AP )

∥∥
1,1

Similarly we can re write ∥max(ηG, PηG′)∥1 as
∥∥max(ηG′ , P⊤ηG)

∥∥
1
. Given a fixed set of cost634

function b⊖, b⊕, a⊖, a⊕, the terms containing |E′|, |E|, |V ′|, |V | are constant and do not affect635

choosing an optimal P . Let C = −a⊖|E′| − a⊕|E| − b⊖|V | − b⊕|V ′|, Using the above equations,636

we can write:637

a⊕ + a⊖

2

∥∥max(A,PA′P⊤)
∥∥
1,1

+
b⊕ + b⊖

2
∥max(ηG, PηG′ )∥1

=
a⊕ + a⊖

2

∥∥max(A′, P⊤AP )
∥∥
1,1

+
b⊕ + b⊖

2

∥∥max(ηG′ , P⊤ηG)
∥∥
1

Let the first term be ρ(G,G′ |P ). Then second term can be expressed as ρ(G′, G |P⊤) and638

ρ(G,G′ |P ) = ρ(G′, G |P⊤) for all P ∈ PN . If P is the optimal solution of minP∈PN
ρ(G,G′ |P )639

then, ρ(G′, G |P⊤) = ρ(G,G′ |P ) ≤ ρ(G,G′ |P ′⊤) = ρ(G′, G | P̃ ) for any permutation P̃ . Hence,640

P ′ = P⊤ ∈ PN is one optimal solution.641

D.3 Connections with other notions of graph matching642

Graph isomorphism: When we set all costs to zero, we can write that GED(G,G′) =643

minP 0.5
∥∥A− PA′P⊤∥∥

1,1
+ ∥ηG − PηG′∥1. In such a scenario, GED(G,G′) is symmetric, i.e.,644

GED(G′, G) = GED(G,G′) and it becomes zero only when G and G′ are isomorphic.645

Subgraph isomorphism: Assume b⊖ = b⊕ = 0. Then, if we set the cost of edge addition646

to be arbitrarily small as compared to the cost of edge deletion, i.e., a⊕ ≪ a⊖. This yields647

GED(G,G′) = minP (b
⊖ ∑

u,v ReLU
(
A− PA′P⊤) [u, v]), which can be reduced to zero for648

some permutation P , G ⊆ G′.649

Maximum common edge subgraph: From Appendix D.2, we can write that GED(G,G′) =650

minP 0.5(a⊕+a⊖)
∥∥max(A,PA′P⊤)

∥∥
1,1

+(b⊕+b⊖) ∥ηG, PηG′∥1−a⊖|E′|−a⊕|E|−b⊖|V ′|−651

b⊕|V |. When a⊖ = a⊕ = 1 and b⊕ = b⊖ = 0, then GED(G,G′) =
∥∥max(A,PA′P⊤)

∥∥
1,1

=652

|E|+ |E′| −
∥∥min(A,PA′P⊤)

∥∥
1,1

. Here, min(A,PA′P⊤) characterizes maximum common edge653

subgraph and
∥∥min(A,PA′P⊤)

∥∥
1,1

provides the number of edges of it.654

D.4 Relation between AlignDiff and DiffAlign655

Lemma 2 Let Z,Z ′ ∈ RN×M , and S ∈ RN×N
≥0 be double stochastic. Then,656

∥ReLU (Z − SZ ′)∥1,1 ≤
∑
i,j

∥ReLU (Z[i, :]− Z ′[j, :])∥1 S[i, j]
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Proof: We can write,657

∥ReLU (Z − SZ ′)∥1,1 =
∑
i,j

∣∣∣ReLU(
Z[i, j]−

∑
k
S[i, k]Z ′[k, j]

)∣∣∣
(∗)
=

∑
i,j

ReLU
(∑

k
S[i, k]Z[i, j]− S[i, k]Z ′[k, j]

)
(∗∗)
≤

∑
i,j

∑
k

S[i, k]ReLU (Z[i, j]− Z ′[k, j])

=
∑
i,k

∥ReLU (Z[i, :]− Z ′[k, :])∥1 S[i, k] □

where (∗) follows since
∑

k S[i, k] = 1 ∀i ∈ [N ], and (∗∗) follows due to convexity of ReLU ().658

Now, notice that when S ∈ PN , then S[i, :] is 1 at one element while 0 at the rest. In that case, we659

have660 ∑
i,j

ReLU
(∑

k
S[i, k]Z[i, j]− S[i, k]Z ′[k, j]

)
=

∑
i,j

ReLU (Z[i, j]− Z ′[k∗i , j])

=
∑
i,j

∑
k

S[i, k]ReLU (Z[i, j]− Z ′[k, j])

where k∗i is the index where S[i, :] is 1. Hence, we have an equality when S is a hard permutation.661

Replacing (Z,Z ′) with (R,R′) and (X,X ′), we get that AlignDiff and DiffAlign are equivalent662

when S is a hard permutation matrix, and moreover DiffAlign is an upper bound on AlignDiff when663

S is a soft permutation matrix.664

D.5 Proof that our design ensures P ′ = P⊤665

Here we show why it is necessary to have a symmetric form for C[u, u′] in PERMNETϕ.666

For GED(G,G′),667

C[u, v] = ∥cϕ (xK(u))− cϕ (x
′
K(v))∥1

For GED(G′, G),668

C ′[v, u] = ∥cϕ (x′
K(v))− cϕ (xK(u))∥1

Because the Sinkhorn cost C[u, v] is symmetric, using the above equations we can infer,669

C[u, v] = C ′[v, u]

C ′ = C⊤

This further leads to P ′ = P⊤.670

If we use an asymmetric Sinkhorn cost (e.g. C[u, v] = ∥ReLU (cϕ (xK(u))− cϕ (x
′
K(v)))∥1), we671

cannot ensure C[u, v] = C ′[v, u], which fails to satisfy P = P⊤.672

D.6 Alternative surrogate for GED673

From Appendix D.2, we have674

GED(G,G′) = min
P∈PN

a⊕ + a⊖

2

∥∥max(A,PA′P⊤)
∥∥
1,1
− a⊖|E′| − a⊕|E|

+
b⊕ + b⊖

2
∥max(ηG, PηG′ )∥1 − b⊖|V ′| − b⊕|V |

Following the relaxations done in Section 3.2, we propose an alternative neural surrogate by replac-675

ing
∥∥max(A,PA′P⊤)

∥∥
1,1

by ∥max(R,SR′)∥1,1 and ∥max(ηG, PηG′ )∥1 by ∥max(X,PX ′)∥1,1,676

which gives us the approximated GED parameterized by θ and ϕ as677

GEDθ,ϕ(G,G′) =
a⊕ + a⊖

2
∥max(R,SR′)∥1,1 − a⊖|E′| − a⊕|E|

+
b⊕ + b⊖

2
∥max(X,PX ′)∥1,1 − b⊖|V ′| − b⊕|V |

(22)

We call this neural surrogate as MAX. We note that element-wise maximum over A and PA′P⊤,678

only allows non-edge to non-edge mapping attribute a value of zero. However, the neural surrogate679
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described in Equation 22 fails to capture this, due to the presence of the soft alignment matrix S.680

To address this, we explicitly discard such pairs from MAX by applying an OR operator over the681

edge presence between concerned node pairs, derived from the adjacency matrices A and A′ and682

populated in OR(A,A′) ∈ R(
N
2 )×(

N
2 ) given by OR(A[u, v], A′[u′, v′]). Similarly, the indication of683

node presence can be given be given as OR(ηG, ηG′)[u, u′] = OR(ηG[u], ηG′ [u′]). Hence, we write684

GEDθ,ϕ(G,G′) =
a⊕ + a⊖

2
∥OR(A,A′)⊙max(R,SR′)∥1,1 − a⊖|E′| − a⊕|E|

+
b⊕ + b⊖

2
∥OR(ηG, ηG′)⊙max(X,PX ′)∥1,1 − b⊖|V ′| − b⊕|V |

(23)
We call this formulation as MAX-OR. We provide the comparison between MAX, MAX-OR, and685

our models in Appendix F.686
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E Details about experimental setup687

E.1 Generation of datasets688

We have evaluated the performance of our methods and baselines on seven real-world datasets:689

Mutagenicity (Mutag), Ogbg-Code2 (Code2), Ogbg-Molhiv (Molhiv), Ogbg-Molpcba (Molpcba),690

AIDS, Linux and Yeast. We split each dataset into training, validation, and test splits in ratio of691

60:20:20. For each split D, we construct (|D|(|D|+ 1))/2 source and target graph instance pairs as692

follows: S = {(Gi, Gj) : Gi, Gj ∈ D ∧ i ≤ j}. We perform experiment in four GED regimes:693

1. GED under equal cost functions, where b⊖ = b⊕ = a⊖ = a⊕ = 1 and substitution costs are 0694

2. GED under unequal cost functions, where b⊖ = 3, b⊕ = 1, a⊖ = 2, a⊕ = 1 and substitution695

costs are 0696

3. edge GED under unequal cost functions, where b⊖ = b⊕ = 0, a⊖ = 2, a⊕ = 1, and substitution697

costs are 0698

4. GED with node substitution under equal cost functions, where b⊖ = b⊕ = a⊖ = a⊕ = 1, as well699

as the node substitution cost b∼ = 1.700

We emphasize that we generated clean datasets by filtering out isomorphic graphs from the original701

datasets before performing the training, validation, and test splits. This step is crucial to prevent702

isomorphism bias in the models, which can occur due to leakage between the training and testing703

splits, as highlighted by [26].704

For each graph, we have limited the maximum number of nodes to twenty, except for Linux, where the705

limit is ten. Information about the datasets is summarized in Table 7. Mutag contains nitroaromatic706

compounds, with each node having labels representing atom types. Molhiv and Molpcba contain707

molecules with node features representing atomic number, chirality, and other atomic properties.708

Code2 contains abstract syntax trees generated from Python codes. AIDS contains graphs of chemical709

compounds, with node types representing different atoms. For Molhiv, Molpcba and Linux, we have710

randomly sampled 1,000 graphs from each original dataset.711

#Graphs # Train Pairs # Val Pairs # Test Pairs Avg. |V | Avg. |E| Avg. GED
equal cost

Avg. GED
unequal cost

Mutag 729 95703 10585 10878 16.01 31.51 11.15 18.57
Code2 128 2926 325 378 18.77 35.53 10.02 16.43
Molhiv 1000 180300 20100 20100 15.01 31.3 11.77 19.86
Molpcba 1000 180300 20100 20100 17.52 37.35 9.58 15.73
AIDS 911 149331 16653 16836 10.97 21.94 7.38 12.07
Yeast 1000 180300 20100 20100 16.59 34.07 10.65 17.74
Linux 89 1431 153 190 8.71 16.7 4.91 7.94

Table 7: Salient characteristics of data sets.

E.2 Details about state-of-the-art baselines712

We compared our model against nine state-of-the-art neural baselines and three combinatorial GED713

baselines. Below, we provide details of the methodology and hyperparameter settings used for each714

baseline. We ensured that the number of model parameters were in a comparable range. Specifically,715

we set the number of GNN layers to 5, each with a node embedding dimension of 10, to ensure716

consistency and comparability with our model. The following hyperparameters are used for training:717

Adam optimiser with a learning rate of 0.001 and weight decay of 0.0005, batch size of 256, early718

stopping with patience of 100 epochs, and Sinkhorn temperature set to 0.01.719

Neural Baselines:720

• GMN-Match and GMN-Embed Graph Matching Networks (GMN) use Euclidean distance to721

assess the similarity between graph-level embeddings of each graph. GMN is available in two722

variants: GMN-Embed, a late interaction model, and GMN-Match, an early interaction model. For723

this study, we used the official implementation of GMN to compute Graph Edit Distance (GED).1724

• ISONET ISONET utilizes the Gumbel-Sinkhorn operator to learn asymmetric edge alignments725

between two graphs for subgraph matching. In our study, we extend ISONET’s approach to predict726

1https://github.com/Lin-Yijie/Graph-Matching-Networks/tree/main
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the Graph Edit Distance (GED) score. We utilized the official PyTorch implementation provided727

by the authors for our experiments.2728

• GREED GREED utilizes a siamese network architecture to compute graph-level embeddings in729

parallel for two graphs. It calculates the Graph Edit Distance (GED) score by computing the norm730

of the difference between these embeddings. The official implementation provided by the authors731

was used for our experiments.3732

• ERIC ERIC utilizes a regularizer to learn node alignment, eliminating the need for an explicit node733

alignment module. The similarity score is computed using a Neural Tensor Network (NTN) and a734

Multi-Layer Perceptron (MLP) applied to the final graph-level embeddings of both graphs. These735

embeddings are derived by concatenating graph-level embeddings from each layer of a Graph736

Isomorphism Network (GIN). The model is trained using a combined loss from the regularizer and737

the predicted similarity score. For our experiments, we used the official PyTorch implementation738

to compute the Graph Edit Distance (GED). The GED scores were inverse normalized from the739

model output to predict the absolute GED.4740

• SimGNN SimGNN leverages both graph-level and node-level embeddings at each layer of the741

GNN. The graph-level embeddings are processed through a Neural Tensor Network to obtain a742

pair-level embedding. Concurrently, the node-level embeddings are used to compute a pairwise743

similarity matrix between nodes, which is then converted into a histogram feature vector. A744

similarity score is calculated by passing the concatenation of these embeddings through a Multi-745

Layer Perceptron (MLP). We used the official PyTorch implementation of SimGNN and inverse746

normalization of the predicted Graph Edit Distance (GED) score to obtain the absolute GED value.5747

• H2MN H2MN presents an early interaction model for graph similarity tasks. Instead of learning748

pairwise node relations, this method attempts to find higher-order node similarity using hypergraphs.749

At each time step of the hypergraph convolution, a subgraph matching module is employed to learn750

cross-graph similarity. After the convolution layers, a readout function is utilized to obtain graph-751

level embeddings. These embeddings are then concatenated and passed through a Multi-Layer752

Perceptron (MLP) to compute the similarity score. We used the official PyTorch implementation of753

H2MN.6754

• GraphSim GraphSim uses GNN, where at each layer, a node-to-node similarity matrix is computed755

using the node embeddings. These similarity matrices are then processed using Convolutional756

Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs) to calculate a similarity score. We757

utilized the official PyTorch implementation.7758

• EGSC We used the Teacher model proposed by Efficient Graph Similarity Computation (EGSC),759

which leverages an Embedding Fusion Network (EFN) at each layer of the Graph Isomorphism760

Network (GIN). The EFN generates a single embedding from a pair of graph embeddings. The761

embeddings of the graph pair from each layer are concatenated and subsequently passed through762

an additional EFN layer and a Multi-Layer Perceptron (MLP) to obtain the similarity score. To763

predict the absolute Graph Edit Distance (GED), we inversely normalized the GED score obtained764

from the output of EGSC. We utilized the official PyTorch implementation provided by the authors765

for our experiments. 8766

Combinatorial Baselines: We use the GEDLIB9 library for implementation of all combinatorial767

baselines.768

• Bipartite [41] Bipartite is an approximate algorithm that considers nodes and surrounding edges769

of nodes into account try to make a bipartite matching between two graphs. They use linear770

assignment algorithms to match nodes and their surroundings in two graphs.771

• Branch [8], Branch Tight [8] improve upon [41] by decomposing graphs into branches. Branch772

Tight algorithm is another version of Branch that calculates a tighter lower bound but has a higher773

time complexity than Branch.774

2https://github.com/Indradyumna/ISONET
3https://github.com/idea-iitd/greed
4https://github.com/JhuoW/ERIC
5https://github.com/benedekrozemberczki/SimGNN
6https://github.com/cszhangzhen/H2MN
7https://github.com/yunshengb/GraphSim
8https://github.com/canqin001/Efficient_Graph_Similarity_Computation
9https://github.com/dbblumenthal/gedlib
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• Anchor Aware GED Chang et al. [15] provides an approximation algorithm that calculates a775

tighter lower bound using the anchor aware technique.776

• IPFP [11] is an approximation algorithm which handles node and edge mapping simultaneously777

unlike previously discussed methods. This solves a quadratic assignment problem on edges and778

nodes.779

• F2 [29] uses a binary linear programming approach to find a higher lower bound on GED calculation.780

This method was used with a very high time limit to generate Ground truth for our experiments.781

E.3 Details about GRAPHEDX782

At the high level, GRAPHEDX consists of two components EMBEDθ and PERMNETϕ.783

Neural Parameterization of EMBEDθ: EMBEDθ consists of two modules: a GNN denoted as784

MPNNθ and a MLPθ. The MPNNθ consists of K = 5 propagation layers used to compute node785

embeddings of dimension d = 10. At each layer k, we compute the updated the node embedding as786

follows:787

xk+1(u) = UPDATEθ

xk(u),
∑

v∈nbr(u)

LRLθ(xk(u), xk(v))

 (24)

where LRLθ is a Linear-ReLU-Linear network, with d = 10 features, and the UPDATEθ network788

consists of a Gated Recurrent Unit [30]. In case of GED setting under equal cost and GED setting789

under unequal cost, we set the initial node features x0(u) = 1, following [30]. However, in case790

of computation of GED with node substitution costs, we explicitly provide the one-hot labels as791

node features. Given the node embeddings and edge-presence indicator obtained from the adjacency792

matrices, after 5 layer propogations, we compute the edge embeddings r(e) using MLPθ, which793

is decoupled from MPNNθ. MLPθ consists of a Linear-ReLU-Linear network that maps the794

2d + 1 = 21 dimensional input consisting of forward (xK(u) ||xK(v) ||A[u, v]) and backward795

(xK(v) ||xK(u) ||A[v, u]) signals to D = 20 dimensions.796

Neural Parameterization of PERMNETϕ: Given the node embeddings xK(·) and x′
K(·), we first797

pass them through a neural network cϕ which consists of a Linear-ReLU-Linear network transforming798

the features from d = 10 to N dimensions, which is the number of nodes after padding. Except799

for Linux where N = 10, all other datasets have N = 20. We obtain the matrix C such that800

C[u, u′] = ∥cϕ(xK(u))− cϕ(x
′
K(u′))∥1. Using temperature τ = 0.01, we perform Sinkhorn801

iterations on exp(−C/τ) as follows for T = 20 iterations to get P :802

Pk = NORMCOL (NORMROW (Pk−1))

where P0 = exp(−C/τ). Here NORMROW(M)[i, j] = M [i, j]/
∑

ℓ M [ℓ, j] denotes the row nor-803

malization function and NORMCOL(M)[i, j] = M [i, j]/
∑

ℓ M [i, ℓ] denotes the column normaliza-804

tion function. We note that the soft alignment P obtained does not depend on the GED cost values,805

as discussed in Appendix D. The soft alignment P for nodes is used to construct soft alignment S for806

as follows: S[(u, v), (u′, v′)] = P [u, u′]P [v, v′] + P [u, v′]P [v, u′].807

E.4 Evaluation metrics808

Given the dataset S consisting of input pairs of graphs (G,G′) along with the ground truth809

GED(G,G′) and model prediction ĜED(G,G′), we evaluate the performance of the model us-810

ing the Root Mean Square Error (RMSE) and Kendall-Tau (KTau) [28] between the predicted GED811

scores and actual GED values.812

• MSE: It evaluates how far the predicted GED values are from the ground truth. A better performing813

model is indicated by a lower MSE value.814

MSE =
1

|S|
∑

(G,G′)∈S

(
GED(G,G′)− ĜED(G,G′)

)2

(25)

• KTau: Selection of relevant corpus graphs via graph similarity scoring is crucial to graph retrieval815

setups. In this context, we would like the number of concordant pairs N+ (where the ranking of816

ground truth GED and model prediction agree) to be high, and the discordant pairs N−(where the817

two disagree) to be low. Formally, we write818

KTau =
N+ −N−(|S|

2

) (26)
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For the methods which compute a similarity score between the pair of graphs through the notion of819

normalized GED, we map the similarity score s back to the GED as ĜED(G,G′) = − |V |+|V |′
2 log(s+820

ϵ) where ϵ = 10−7 is added for stability of the logarithm.821

E.5 Hardware and license822

We implement our models using Python 3.11.2 and PyTorch 2.0.0. The training of our models and823

the baselines was performed across servers containing Intel Xeon Silver 4216 2.10GHz CPUs, and824

Nvidia RTX A6000 GPUs. Running times of all methods are compared on the same GPU.825
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F Additional experiments826

In this section, we present results from various additional experiments performed to measure the827

performance of our model under different cost settings.828

F.1 Comparison of GRAPHEDX with baselines on equal and unequal cost setting829

Tables 8 and 9 report performance in terms of MSE under equal and unequal cost settings, respectively.830

Table 10 reports performance in terms of KTau under both equal and unequal cost settings. The results831

are similar to those in Table 2, where our model is the clear winner across all datasets, outperforming832

the second-best performer by a significant margin. There is no consistent second-best model, but833

ERIC, EGSC, and ISONET perform comparably and better than the others.834

Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
GMN-Match 0.797 ± 0.013 1.677 ± 0.187 1.318 ± 0.020 1.073 ± 0.011 0.821 ± 0.010 0.687 ± 0.088 1.175 ± 0.013
GMN-Embed 1.032 ± 0.016 1.358 ± 0.104 1.859 ± 0.020 1.951 ± 0.020 1.044 ± 0.013 0.736 ± 0.102 1.767 ± 0.021
ISONET 1.187 ± 0.021 0.879 ± 0.061 1.354 ± 0.015 1.106 ± 0.011 1.640 ± 0.020 1.185 ± 0.115 1.578 ± 0.019
GREED 1.398 ± 0.033 1.869 ± 0.140 1.708 ± 0.019 1.550 ± 0.017 1.004 ± 0.012 1.331 ± 0.169 1.423 ± 0.015
ERIC 0.719 ± 0.011 1.363 ± 0.110 1.165 ± 0.018 0.862 ± 0.009 0.731 ± 0.008 1.664 ± 0.260 0.969 ± 0.010
SimGNN 1.471 ± 0.024 2.667 ± 0.215 1.609 ± 0.020 1.456 ± 0.020 1.455 ± 0.020 7.232 ± 0.762 1.999 ± 0.043
H2MN 1.278 ± 0.021 7.240 ± 0.527 1.521 ± 0.020 1.402 ± 0.020 1.114 ± 0.015 2.238 ± 0.247 1.353 ± 0.018
GraphSim 2.005 ± 0.031 3.139 ± 0.206 2.577 ± 0.064 1.656 ± 0.023 1.936 ± 0.026 2.900 ± 0.318 2.232 ± 0.030
EGSC 0.765 ± 0.011 4.165 ± 0.285 1.138 ± 0.016 0.938 ± 0.010 0.627 ± 0.007 2.411 ± 0.325 0.950 ± 0.010
GRAPHEDX 0.492 ± 0.007 0.429 ± 0.036 0.781 ± 0.008 0.764 ± 0.007 0.565 ± 0.006 0.354 ± 0.043 0.717 ± 0.007

Table 8: Comparison with baselines in terms of MSE including standard error for equal cost setting
(b⊖ = b⊕ = a⊖ = a⊕ = 1). Green (yellow) numbers report the best (second best) performers.

Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
GMN-Match 69.210 ± 0.883 13.472 ± 0.970 76.923 ± 0.862 23.985 ± 0.224 31.522 ± 0.513 21.519 ± 2.256 63.179 ± 1.127
GMN-Embed 72.495 ± 0.915 13.425 ± 1.035 78.254 ± 0.865 28.437 ± 0.268 33.221 ± 0.523 20.591 ± 2.136 60.949 ± 0.663
ISONET 3.369 ± 0.062 3.025 ± 0.206 3.451 ± 0.039 2.781 ± 0.029 5.513 ± 0.092 3.031 ± 0.299 4.555 ± 0.061
GREED 68.732 ± 0.867 11.095 ± 0.773 78.300 ± 0.795 26.057 ± 0.238 34.354 ± 0.557 20.667 ± 2.140 60.652 ± 0.704
ERIC 1.981 ± 0.032 12.767 ± 1.177 3.377 ± 0.070 2.057 ± 0.020 1.581 ± 0.017 7.809 ± 0.911 2.341 ± 0.030
SimGNN 4.747 ± 0.079 5.212 ± 0.360 4.145 ± 0.051 3.465 ± 0.047 4.316 ± 0.071 5.369 ± 0.546 4.496 ± 0.060
H2MN 3.413 ± 0.053 9.435 ± 0.728 3.782 ± 0.046 3.396 ± 0.046 3.105 ± 0.043 5.848 ± 0.611 3.678 ± 0.046
GraphSim 5.370 ± 0.092 7.405 ± 0.577 6.643 ± 0.181 3.928 ± 0.053 5.266 ± 0.081 6.815 ± 0.628 6.907 ± 0.137
EGSC 1.758 ± 0.026 3.957 ± 0.365 2.371 ± 0.025 2.133 ± 0.022 1.693 ± 0.023 5.503 ± 0.496 2.157 ± 0.027
GRAPHEDX 1.134 ± 0.016 1.478 ± 0.118 1.804 ± 0.019 1.677 ± 0.016 1.252 ± 0.014 0.914 ± 0.110 1.603 ± 0.016

Table 9: Comparison with baselines in terms of MSE including standard error for unequal cost
setting (b⊖ = 3, b⊕ = 1, a⊖ = 2, a⊕ = 1). Green (yellow) numbers report the best (second best)
performers.

GED with equal cost GED with unequal cost
Mutag Code2 Molhiv Molpcba AIDS Linux Yeast Mutag Code2 Molhiv Molpcba AIDS Linux Yeast

GMN-Match 0.901 0.876 0.887 0.797 0.824 0.826 0.852 0.606 0.781 0.619 0.596 0.611 0.438 0.610
GMN-Embed 0.887 0.892 0.856 0.723 0.796 0.815 0.815 0.603 0.790 0.607 0.534 0.601 0.531 0.573
ISONET 0.885 0.918 0.878 0.793 0.756 0.786 0.827 0.887 0.908 0.875 0.817 0.755 0.776 0.834
GREED 0.873 0.878 0.859 0.757 0.807 0.756 0.832 0.614 0.812 0.598 0.547 0.596 0.522 0.582
ERIC 0.909 0.892 0.897 0.820 0.837 0.736 0.868 0.620 0.804 0.895 0.841 0.855 0.633 0.886
SimGNN 0.871 0.856 0.877 0.776 0.775 0.377 0.834 0.862 0.874 0.872 0.804 0.768 0.731 0.843
H2MN 0.878 0.711 0.879 0.781 0.794 0.664 0.848 0.873 0.813 0.875 0.804 0.792 0.681 0.851
GraphSim 0.847 0.839 0.856 0.756 0.730 0.601 0.810 0.851 0.844 0.851 0.784 0.744 0.656 0.824
EGSC 0.906 0.815 0.896 0.809 0.850 0.664 0.868 0.912 0.894 0.900 0.836 0.858 0.696 0.884
GRAPHEDX 0.926 0.937 0.910 0.831 0.857 0.882 0.886 0.929 0.932 0.912 0.858 0.871 0.875 0.898

Table 10: Comparison with baselines in terms of KTau for both equal and unequal cost settings, where
for equal cost settings costs are b⊖ = b⊕ = a⊖ = a⊕ = 1 and for unequal cost settings costs are
b⊖ = 3, b⊕ = 1, a⊖ = 2, a⊕ = 1. Green (yellow) numbers report the best (second best) performers.
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F.2 Comparison of GRAPHEDX with baselines with node substitution cost835

In Tables 11 and 12, we compare the performance of GRAPHEDX with baselines under a node836

substitution cost b∼. The cost setting is b⊖ = b⊕ = b∼ = a⊖ = a⊕ = 1. This experiment includes837

only five datasets where node labels are present. We observe that GRAPHEDX outperforms all other838

baselines. There is no clear second-best model, but ERIC, EGSC, and ISONET perform better than839

the others.840

Mutag Code2 Molhiv Molpcba AIDS
GMN-Match 1.057 ± 0.011 5.224 ± 0.404 1.388 ± 0.018 1.432 ± 0.017 0.868 ± 0.007
GMN-Embed 2.159 ± 0.026 4.070 ± 0.318 3.523 ± 0.040 4.657 ± 0.054 1.818 ± 0.014
ISONET 0.876 ± 0.008 1.129 ± 0.084 1.617 ± 0.020 1.332 ± 0.014 1.142 ± 0.010
GREED 2.876 ± 0.032 4.983 ± 0.531 2.923 ± 0.033 3.902 ± 0.044 2.175 ± 0.016
ERIC 0.886 ± 0.009 6.323 ± 0.683 1.537 ± 0.018 1.278 ± 0.014 1.602 ± 0.036
SimGNN 1.160 ± 0.013 5.909 ± 0.490 1.888 ± 0.031 2.172 ± 0.050 1.418 ± 0.020
H2MN 1.277 ± 0.014 6.783 ± 0.587 1.891 ± 0.024 1.666 ± 0.021 1.290 ± 0.011
GraphSim 1.043 ± 0.010 4.708 ± 0.425 1.817 ± 0.021 1.748 ± 0.021 1.561 ± 0.021
EGSC 0.776 ± 0.008 8.742 ± 0.831 1.273 ± 0.016 1.426 ± 0.018 1.270 ± 0.028
GRAPHEDX 0.441 ± 0.004 0.820 ± 0.092 0.792 ± 0.009 0.846 ± 0.009 0.538 ± 0.003

Table 11: Comparison with baselines in terms of MSE including standard error, in presence of the
node substitution cost, which set to one in equal cost setting: b⊖ = b⊕ = b∼ = a⊖ = a⊕ = 1.
Green (yellow) numbers report the best (second best) performers.

Mutag Code2 Molhiv Molpcba AIDS
GMN-Match 0.895 0.811 0.881 0.809 0.839
GMN-Embed 0.847 0.845 0.796 0.684 0.767
ISONET 0.906 0.925 0.868 0.815 0.812
GREED 0.827 0.829 0.822 0.710 0.746
ERIC 0.905 0.847 0.872 0.818 0.815
SimGNN 0.891 0.836 0.864 0.797 0.810
H2MN 0.886 0.818 0.858 0.789 0.802
GraphSim 0.896 0.846 0.860 0.782 0.795
EGSC 0.912 0.802 0.885 0.821 0.832
GRAPHEDX 0.936 0.945 0.913 0.856 0.874

Table 12: Comparison with baselines in terms of KTau, in presence of the node substitution cost,
which set to one in equal cost setting: b⊖ = b⊕ = b∼ = a⊖ = a⊕ = 1. Green (yellow) numbers
report the best (second best) performers.

F.3 Performance evaluation for edge-only vs. all-node-pair representations841

Tables 13 and 14 contain extended results from Table 4 across seven datasets. The results are842

similar to those discussed in the main paper: (1) The all-node-pair representation performs better843

than the variants of edge-only representations. (2) within the edge-only representation, Edge-only844

(edge→ edge) performs better than Edge-only (pair→ pair) in most of the cases.845

Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
Edge-only (edge→ edge) 0.566 ± 0.008 0.683 ± 0.051 0.858 ± 0.009 0.791 ± 0.008 0.598 ± 0.006 0.454 ± 0.063 0.749 ± 0.007
Edge-only (pair→ pair) 0.596 ± 0.008 0.760 ± 0.058 0.862 ± 0.009 0.811 ± 0.008 0.606 ± 0.006 0.474 ± 0.056 0.761 ± 0.008
GRAPHEDX 0.492 ± 0.007 0.429 ± 0.036 0.781 ± 0.008 0.764 ± 0.007 0.565 ± 0.006 0.354 ± 0.043 0.717 ± 0.007

Table 13: Comparison of using all-node-pairs against edge-only representations using MSE for equal
cost setting. Green (yellow) numbers report the best (second best) performers.

Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
Edge-only (edge→ edge) 1.274 ± 0.017 1.817 ± 0.141 1.847 ± 0.019 1.793 ± 0.017 1.318 ± 0.014 0.907 ± 0.129 1.649 ± 0.016
Edge-only (pair→ pair) 1.276 ± 0.017 1.879 ± 0.136 1.865 ± 0.020 1.779 ± 0.017 1.422 ± 0.015 0.992 ± 0.114 1.694 ± 0.017
GRAPHEDX 1.134 ± 0.016 1.478 ± 0.118 1.804 ± 0.019 1.677 ± 0.016 1.252 ± 0.014 0.914 ± 0.110 1.603 ± 0.016

Table 14: Comparison of using all-node-pairs against edge-only representations using MSE for
unequal cost setting. Green (yellow) numbers report the best (second best) performers.
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F.4 Effect of using cost-guided scoring function on baselines846

In Tables 15 and 16, we report the impact of replacing the baselines’ scoring function with our847

proposed cost-guided scoring function on three baselines across seven datasets for equal and unequal848

cost settings, respectively. We notice that similar to the results reported in Section 4.2, the cost-guided849

scoring function helps the baselines perform significantly better in both the cost settings.850

Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
GMN-Match 0.797 ± 0.013 1.677 ± 0.187 1.318 ± 0.020 1.073 ± 0.011 0.821 ± 0.010 0.687 ± 0.088 1.175 ± 0.013
GMN-Match * 0.654 ± 0.011 0.960 ± 0.092 1.008 ± 0.011 0.858 ± 0.009 0.601 ± 0.007 0.590 ± 0.084 0.849 ± 0.009
GMN-Embed 1.032 ± 0.016 1.358 ± 0.104 1.859 ± 0.020 1.951 ± 0.020 1.044 ± 0.013 0.736 ± 0.102 1.767 ± 0.021
GMN-Embed * 1.011 ± 0.017 1.179 ± 0.098 1.409 ± 0.015 1.881 ± 0.019 0.849 ± 0.010 0.577 ± 0.094 1.600 ± 0.017
GREED 1.398 ± 0.033 1.869 ± 0.140 1.708 ± 0.019 1.550 ± 0.017 1.004 ± 0.012 1.331 ± 0.169 1.423 ± 0.015
GREED * 2.133 ± 0.037 1.850 ± 0.156 1.644 ± 0.019 1.623 ± 0.017 1.143 ± 0.015 1.297 ± 0.151 1.440 ± 0.016
GRAPHEDX 0.492 ± 0.007 0.429 ± 0.036 0.781 ± 0.008 0.764 ± 0.007 0.565 ± 0.006 0.354 ± 0.043 0.717 ± 0.007

Table 15: Impact of cost-guided distance on MSE in equal cost setting (b⊖ = b⊕ = a⊖ = a⊕ = 1).
* represents the variant of the baseline with cost-guided distance. Green shows the best performing
model. Bold font indicates the best variant of the baseline.

Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
GMN-Match 69.210 ± 0.883 13.472 ± 0.970 76.923 ± 0.862 23.985 ± 0.224 31.522 ± 0.513 21.519 ± 2.256 63.179 ± 1.127
GMN-Match * 1.592 ± 0.027 2.906 ± 0.285 2.162 ± 0.024 1.986 ± 0.021 1.434 ± 0.017 1.596 ± 0.211 2.036 ± 0.022
GMN-Embed 72.495 ± 0.915 13.425 ± 1.035 78.254 ± 0.865 28.437 ± 0.268 33.221 ± 0.523 20.591 ± 2.136 60.949 ± 0.663
GMN-Embed * 2.368 ± 0.039 3.272 ± 0.289 3.413 ± 0.037 4.286 ± 0.043 2.046 ± 0.025 1.495 ± 0.200 3.850 ± 0.042
GREED 68.732 ± 0.867 11.095 ± 0.773 78.300 ± 0.795 26.057 ± 0.238 34.354 ± 0.557 20.667 ± 2.140 60.652 ± 0.704
GREED * 2.456 ± 0.040 5.429 ± 0.517 3.827 ± 0.043 3.807 ± 0.040 2.282 ± 0.028 2.894 ± 0.394 3.506 ± 0.038
GRAPHEDX 1.134 ± 0.016 1.478 ± 0.118 1.804 ± 0.019 1.677 ± 0.016 1.252 ± 0.014 0.914 ± 0.110 1.603 ± 0.016

Table 16: Impact of cost-guided distance on MSE in unequal cost setting (b⊖ = 3, b⊕ = 1, a⊖ =
2, a⊕ = 1). * represents the variant of the baseline with cost-guided distance. Green shows the best
performing model. Bold font indicates the best variant of the baseline.

F.5 Results on performance of the alternate surrogates for GED851

In Table 17, we present the performance of the alternate surrogates scoring function for GED852

discussed in D under unequal cost settings (b⊖ = 3, b⊕ = 1, a⊖ = 2, a⊕ = 1). From the results,853

we can infer that the alternate surrogates have comparable performance to GRAPHEDX however854

GRAPHEDX outperforms it by a small margin on six out of the seven datasets.855

Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
MAX-OR 1.194 ± 0.016 1.112 ± 0.084 1.987 ± 0.022 1.806 ± 0.017 1.347 ± 0.014 1.009 ± 0.132 1.686 ± 0.018
MAX 1.351 ± 0.018 1.772 ± 0.122 1.972 ± 0.021 1.764 ± 0.017 1.346 ± 0.015 1.435 ± 0.169 1.748 ± 0.018
GRAPHEDX 1.134 ± 0.016 1.478 ± 0.118 1.804 ± 0.019 1.677 ± 0.016 1.252 ± 0.014 0.914 ± 0.110 1.603 ± 0.016

Table 17: Comparison of MSE between our variant MAX-OR and MAX. Green (yellow) numbers
report the best (second best) performers.
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F.6 Importance of node-edge consistency856

GRAPHEDX enforces consistency between node and edge alignments by design. However, one might857

choose to enforce node-edge consistency through alignment regularization between independently858

learnt soft node and edge alignment. However, as shown in Figure 18, we notice that such non-859

constrained learning might lead to under-prediction or incorrect alignments. We demonstrate the860

importance of constraining the node-pair alignment S with the node alignment P by showing the861

mapping of nodes and edges between two graphs. The required edit operations for subfigure a) with862

the constrained S are two node additions {e, f}, one edge deletion (d, a), and three edge additions863

{(a, f), (e, d), (e, f)}. Assuming that each edit costs one, the true GED is 6. However, in subplot b),864

S is not constrained, and the edit operations with the lowest cost are two node additions {e, f} and865

two edge additions {(a, f), (e, f)}. This erroneously results in a GED of 4.866

(a) Constrained S (b) Unconstrained S

Figure 18: Node and edge alignment with constrained and unconstrained alignment S. A dashed
edge represents the deleted edge. Grey edges represent added edges.

Further, in Table 19, we compare the performance of enforcing node-edge consistency through design867

(GRAPHEDX), and through alignment regularization (REG). Following the discussion in Section 3.2,868

such a model also exhibits a variant with XOR, called REG-xor. We notice that GRAPHEDX even869

outperforms such the described model in 4 out of 6 cases. We also notice that REG-xor outperforms870

GRAPHEDX in the other two cases. However, the above example shows a tendency to learn wrong871

alignments which in turn gives wrong optimal edit paths.
GED with equal cost GED with unequal cost

Mutag Code2 Molhiv Mutag Code2 Molhiv
REG 0.536 0.576 0.848 1.162 1.488 1.877
REG-xor 0.513 0.587 0.826 1.309 1.440 1.711
GRAPHEDX 0.492 0.429 0.781 1.134 1.478 1.804

Table 19: Comparison of alignment regularizer usage versus no alignment regularizer usage on equal
cost GED, Measured by MSE. Green (yellow) numbers report the best (second best) performers.

872
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F.7 Comparison of nine possible combinations our proposed set distances873

In Tables 20 and 21, we compare the performance of nine possible combinations our proposed set874

distances for equal and unequal cost settings respectively. Results follow the observations in Table 5,875

where the variant with XOR-DiffAlign outperforms those without it.876

Edge edit Node edit Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
DiffAlign DiffAlign 0.579 ± 0.0078 0.740 ± 0.0585 0.820 ± 0.0086 0.778 ± 0.0075 0.603 ± 0.0063 0.494 ± 0.0528 0.728 ± 0.0071
DiffAlign AlignDiff 0.557 ± 0.0073 0.742 ± 0.0612 0.806 ± 0.0088 0.779 ± 0.0076 0.597 ± 0.0063 0.452 ± 0.0614 0.747 ± 0.0078
DiffAlign XOR 0.538 ± 0.0072 0.719 ± 0.0560 0.794 ± 0.0083 0.777 ± 0.0075 0.580 ± 0.0060 0.356 ± 0.0512 0.750 ± 0.0075
AlignDiff DiffAlign 0.537 ± 0.0072 0.513 ± 0.0367 0.815 ± 0.0085 0.773 ± 0.0074 0.606 ± 0.0064 0.508 ± 0.0607 0.731 ± 0.0073
AlignDiff AlignDiff 0.578 ± 0.0079 0.929 ± 0.0659 0.833 ± 0.0086 0.773 ± 0.0075 0.593 ± 0.0062 0.605 ± 0.0678 0.761 ± 0.0076
AlignDiff XOR 0.533 ± 0.0074 0.826 ± 0.0565 0.812 ± 0.0083 0.780 ± 0.0074 0.575 ± 0.0060 0.507 ± 0.0568 0.889 ± 0.0138
XOR AlignDiff 0.492 ± 0.0066 0.429 ± 0.0355 0.788 ± 0.0084 0.766 ± 0.0074 0.565 ± 0.0062 0.416 ± 0.0494 0.730 ± 0.0072
XOR DiffAlign 0.510 ± 0.0067 0.634 ± 0.0522 0.781 ± 0.0084 0.765 ± 0.0073 0.574 ± 0.0060 0.332 ± 0.0430 0.717 ± 0.0072
XOR XOR 0.530 ± 0.0074 1.588 ± 0.1299 0.807 ± 0.0084 0.764 ± 0.0073 0.564 ± 0.0059 0.354 ± 0.0427 0.721 ± 0.0076

GRAPHEDX 0.492 ± 0.0066 0.429 ± 0.0355 0.781 ± 0.0084 0.764 ± 0.0073 0.565 ± 0.0062 0.354 ± 0.0427 0.717 ± 0.0072

Table 20: Comparison of MSE for nine combinations of our neural set distance surrogates under
equal cost settings. The GRAPHEDX model was selected based on the best MSE on the validation
set, while the reported results represent MSE on the test set. Green (yellow) numbers report the best
(second best) performers.

Edge edit Node edit Mutag Code2 Molhiv Molpcba AIDS Linux Yeast
DiffAlign DiffAlign 1.205 ± 0.0159 2.451 ± 0.2141 1.855 ± 0.0197 1.825 ± 0.0178 1.417 ± 0.0146 0.988 ± 0.1269 1.630 ± 0.0161
DiffAlign AlignDiff 1.211 ± 0.0164 2.116 ± 0.1581 1.887 ± 0.0199 1.811 ± 0.0174 1.319 ± 0.0140 1.078 ± 0.1168 1.791 ± 0.0185
DiffAlign XOR 1.146 ± 0.0154 1.896 ± 0.1487 1.802 ± 0.0188 1.822 ± 0.0176 1.381 ± 0.0148 1.049 ± 0.1182 1.737 ± 0.0172
AlignDiff DiffAlign 1.185 ± 0.0159 1.689 ± 0.1210 1.874 ± 0.0202 1.758 ± 0.0169 1.391 ± 0.0145 0.914 ± 0.1099 1.643 ± 0.0163
AlignDiff AlignDiff 1.338 ± 0.0178 1.488 ± 0.1222 1.903 ± 0.0204 1.859 ± 0.0179 1.326 ± 0.0141 1.258 ± 0.1335 1.731 ± 0.0171
AlignDiff XOR 1.196 ± 0.0164 1.741 ± 0.1151 1.870 ± 0.0196 1.815 ± 0.0174 1.374 ± 0.0146 1.128 ± 0.1330 1.802 ± 0.0194
XOR AlignDiff 1.134 ± 0.0158 1.478 ± 0.1178 1.872 ± 0.0202 1.742 ± 0.0168 1.252 ± 0.0136 1.073 ± 0.1211 1.639 ± 0.0162
XOR DiffAlign 1.148 ± 0.0157 1.489 ± 0.1220 1.804 ± 0.0192 1.757 ± 0.0171 1.340 ± 0.0140 0.931 ± 0.1149 1.603 ± 0.0160
XOR XOR 1.195 ± 0.0172 2.507 ± 0.1979 1.855 ± 0.0195 1.677 ± 0.0161 1.319 ± 0.0141 1.193 ± 0.1490 1.638 ± 0.0169

GRAPHEDX 1.134 ± 0.0158 1.478 ± 0.1178 1.804 ± 0.0192 1.677 ± 0.0161 1.252 ± 0.0136 0.914 ± 0.1099 1.603 ± 0.0160

Table 21: Comparison of MSE for nine combinations under unequal cost settings. The GRAPHEDX
model was selected based on the best MSE on the validation set, while the reported results represent
MSE on the test set. Green (yellow) numbers report the best (second best) performers.
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F.8 Comparison of performance of GRAPHEDX on unequal cost Edge-GED877

We consider another cost setting – where the node costs are explicitly set to 0, and a⊕ = 1, a⊖ = 2.878

In such a case, GRAPHEDX only consists of ∆⊖(R,R′ |S) and ∆⊕(R,R′ |S) terms. To showcase879

the importance of aligning edges through edge alignment, we generate an alternate model, where the880

alignment happens through the terms ∆⊖(X,X ′ |P ) and ∆⊕(X,X ′ |P ), where we set b⊕ = 1 and881

b⊖ = 2, and set the edge costs to 0. We call this model NodeSwap (w/o XOR), and the corresponding882

XOR variant as NodeSwap + XOR. In Table 22, we compare the performance variants of GRAPHEDX883

with NodeSwap (w/o XOR) and the rest of the baselines to predict the Edge GED score in an unequal884

cost setting. From the results, we can infer that the performance of edge-alignment based model to885

predict Edge-GED outperforms the corresponding node-alignment version.
MSE ± STD KTau

Mutag Molhiv Linux Mutag Molhiv Linux
GMN-Match 11.276 ± 0.143 13.586 ± 0.171 4.893 ± 0.527 0.600 0.562 0.453
GMN-Embed 13.627 ± 0.179 16.482 ± 0.188 4.363 ± 0.420 0.556 0.529 0.484
ISONET 1.468 ± 0.020 2.142 ± 0.023 1.930 ± 0.186 0.846 0.802 0.659
GREED 11.906 ± 0.148 13.723 ± 0.136 3.847 ± 0.397 0.588 0.558 0.512
ERIC 1.900 ± 0.028 2.154 ± 0.024 3.361 ± 0.353 0.823 0.805 0.510
SimGNN 3.138 ± 0.052 3.771 ± 0.046 5.089 ± 0.524 0.784 0.736 0.410
H2MN 3.771 ± 0.062 3.735 ± 0.047 5.443 ± 0.566 0.748 0.741 0.358
GraphSim 4.696 ± 0.076 5.200 ± 0.074 6.597 ± 0.697 0.720 0.694 0.316
EGSC 1.871 ± 0.028 2.187 ± 0.025 2.803 ± 0.260 0.823 0.797 0.608
NodeSwap (w/o XOR) 1.246 ± 0.017 1.858 ± 0.019 0.997 ± 0.124 0.857 0.814 0.757
NodeSwap + XOR 11.984 ± 0.227 11.158 ± 0.196 10.959 ± 1.116 0.586 0.604 0.321
GRAPHEDX (w/o XOR) 1.174 ± 0.016 1.842 ± 0.019 0.976 ± 0.115 0.863 0.815 0.764
GRAPHEDX + XOR 1.125 ± 0.016 1.855 ± 0.020 0.922 ± 0.108 0.866 0.817 0.780

Table 22: Comparison of edge-alignment based GED scoring function with node-alignment based
GED scoring function and state-of-the-art baselines under the cost setting: a⊖ = 2, a⊕ = 1, b⊖ =
b⊕ = 0. In case of NodeSwap (w/o XOR), we swap the edge costs and node costs, and expect the
model to learn the alignments in Edge GED through node alignment only. Green (yellow) numbers
report the best (second best) performers.
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F.9 Comparison of performance of our model with baselines using scatter plot887

In Figure 23, we illustrate the performance of our model compared to the second-best performing888

model, under both equal and unequal cost settings, by visualizing the distribution of outputs of the889

predicted GEDs by both models. We observe that predictions from our model consistently align890

closer to the y = x line across various datasets showcasing lower output variance as compared to the891

next best-performing model.
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Figure 23: Scatter plot comparing the distribution of the predicted GED of our model with the next
best-performing model across various datasets under both equal and unequal cost settings.

892

F.10 Comparison of performance of our model with baselines using error distribution893

In Figure 24, we plot the distribution of error (MSE) of our model against the second-best performing894

model, under both equal and unequal cost settings. We observe that our model performs better,895

exhibiting a higher probability density for lower MSE values and a lower probability density for896

higher MSE values.
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Figure 24: Error distribution of our model compared to the next best-performing model across various
datasets under both equal and unequal cost settings.
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F.11 Comparison of Combinatorial Optimisation Gadgets for GED prediction898

10−3 10−1 1010.00.1

IPFP

Anchor-aware GED

Branch-tight

F2

Bipartite

Branch

GraphEdX

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(a) Mutag equal cost

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(b) Mutag unequal cost

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(c) Code2 equal cost

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(d) Code2 unequal cost

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(e) AIDS equal cost

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(f) AIDS unequal cost

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(g) Linux equal cost

10−4 10−2 10−1 100 101

Time Limit (sec)→
0

1

10

100

M
S

E
→

(h) Linux unequal cost
Figure 25: Performance of combinatorial optimization algorithms on various datasets under both
equal and unequal cost settings is evaluated. We plot MSE against the time limit allocated to the
combinatorial algorithms. Additionally, we include the amortized time of our model and its MSE.

We compare the runtime performance of six combinatorial optimization algorithms described in899

Appendix E (ipfp [11], anchor-aware GED [15], branch tight [8], F2 [29], bipartite [41] and branch900

[8]). We note that combinatorial algorithms are slow to approximate the GED between two graphs.901

Specifically, GRAPHEDX often predicts the GED in ∼ 10−4 seconds per graph, however, the902

performance of the combinatorial baselines are extremely poor under such a time constraint. Hence,903

we execute the combinatorial algorithms with four different time limits per graph: ranging from 10−2904

seconds (100x our method) to 10 seconds (105x our method).905

In Figure 25, we depict the MSE versus time limit for the aforementioned combinatorial algorithms906

under both equal and unequal cost settings. We also showcase the inference time per graph of our907

method in the figure. It is evident that even with a time limit scaled by 105x, most combinatorial908

algorithms struggle to achieve a satisfactory approximation for the GED.909

F.12 Prediction timing analysis910
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Figure 26: GED inference time comparison between our model and baselines. We notice that
GRAPHEDX is consistently the third-fastest amongst all baselines. Although GMN-Embed and
GREED have the lowest inference time, GRAPHEDX has much lower MSE consistently.

In Figure 26 illustrates the inference time per graph of our model versus under equal cost settings,911

averaged over ten runs. From the figure, we observe the following (1) GRAPHEDX outperforms most912

of the baselines in terms of inference time (2) GMN-Embed and GREED, run faster compared to913

all other methods due to lack of interaction between graphs, which results in poor performance at914

predicting the GED.915
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F.13 Visualization (Optimal edit path) + Pseudocode916

In Algorithm 1, we present the pseudocode to generate the optimal edit path given the learnt node917

and edge alignments from GRAPHEDX. Figure 27 demonstrates how the operations in the edit path918

can be utilized to convert G to G′.919

Figure 27: An example of the sequence of edit operations performed to convert one graph into
another.

Algorithm 1 Generation of Edit Path

1: function GETEDITPATH(G,G′, ηG, ηG′)
2: P, S ← GRAPHEDX(G,G′, ηG, ηG′)
3: P, S ← HUNGARIAN(P ), HUNGARIAN(S)
4: o = NewList()
5: for (u, v) ∈ [N ]× [N ] do
6: if P [u, v] = 1 and ηG[u] = 0 and ηG′ [v] = 1 then
7: AddItem(o,ADDNODE(u))
8: for (u, v), (u′, v′) ∈ {[N ]× [N ]} × {[N ]× [N ]} do
9: if S[(u, v), (u′, v′)] = 1 and A[u, v] = 0 and A′[u′, v′] = 1 then

10: AddItem(o,ADDEDGE((u, v)))
11: if S[(u, v), (u′, v′)] = 1 and A[u, v] = 1 and A′[u′, v′] = 0 then
12: AddItem(o,DELEDGE((u, v)))
13: for (u, v) ∈ [N ]× [N ] do
14: if P [u, v] = 1 and ηG[u] = 1 and ηG′ [v] = 0 then
15: AddItem(o,DELNODE(u))
16: return o

F.14 Comparison of number of parameters920

In Table 28, we present the number of parameters for each model used in the experiments.
GMN-Match GMN-Embed ISONET GREED ERIC SimGNN H2MN GraphSim EGSC GRAPHEDX

# Parameters 2300 2000 2595 2464 5932 1773 3004 6331 4278 3030
Table 28: Number of parameters of all methods

921
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NeurIPS Paper Checklist922

1. Claims923

Question: Do the main claims made in the abstract and introduction accurately reflect the924

paper’s contributions and scope?925

Answer: [Yes]926

Justification: In Section 4, we present experiments and results to support the claims made in927

the abstract and introduction.928

Guidelines:929

• The answer NA means that the abstract and introduction do not include the claims930

made in the paper.931

• The abstract and/or introduction should clearly state the claims made, including the932

contributions made in the paper and important assumptions and limitations. A No or933

NA answer to this question will not be perceived well by the reviewers.934

• The claims made should match theoretical and experimental results, and reflect how935

much the results can be expected to generalize to other settings.936

• It is fine to include aspirational goals as motivation as long as it is clear that these goals937

are not attained by the paper.938

2. Limitations939

Question: Does the paper discuss the limitations of the work performed by the authors?940

Answer: [Yes]941

Justification: In Appendix A, we discuss the limitations of our work.942

Guidelines:943

• The answer NA means that the paper has no limitation while the answer No means that944

the paper has limitations, but those are not discussed in the paper.945

• The authors are encouraged to create a separate "Limitations" section in their paper.946

• The paper should point out any strong assumptions and how robust the results are to947

violations of these assumptions (e.g., independence assumptions, noiseless settings,948

model well-specification, asymptotic approximations only holding locally). The authors949

should reflect on how these assumptions might be violated in practice and what the950

implications would be.951

• The authors should reflect on the scope of the claims made, e.g., if the approach was952

only tested on a few datasets or with a few runs. In general, empirical results often953

depend on implicit assumptions, which should be articulated.954

• The authors should reflect on the factors that influence the performance of the approach.955

For example, a facial recognition algorithm may perform poorly when image resolution956

is low or images are taken in low lighting. Or a speech-to-text system might not be957

used reliably to provide closed captions for online lectures because it fails to handle958

technical jargon.959

• The authors should discuss the computational efficiency of the proposed algorithms960

and how they scale with dataset size.961

• If applicable, the authors should discuss possible limitations of their approach to962

address problems of privacy and fairness.963

• While the authors might fear that complete honesty about limitations might be used by964

reviewers as grounds for rejection, a worse outcome might be that reviewers discover965

limitations that aren’t acknowledged in the paper. The authors should use their best966

judgment and recognize that individual actions in favor of transparency play an impor-967

tant role in developing norms that preserve the integrity of the community. Reviewers968

will be specifically instructed to not penalize honesty concerning limitations.969

3. Theory Assumptions and Proofs970

Question: For each theoretical result, does the paper provide the full set of assumptions and971

a complete (and correct) proof?972

Answer: [Yes]973

Justification: In Appendix D, we provide proof for the theoretical results mentioned in the974

paper.975

Guidelines:976

• The answer NA means that the paper does not include theoretical results.977

• All the theorems, formulas, and proofs in the paper should be numbered and cross-978

referenced.979
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• All assumptions should be clearly stated or referenced in the statement of any theorems.980

• The proofs can either appear in the main paper or the supplemental material, but if981

they appear in the supplemental material, the authors are encouraged to provide a short982

proof sketch to provide intuition.983

• Inversely, any informal proof provided in the core of the paper should be complemented984

by formal proofs provided in appendix or supplemental material.985

• Theorems and Lemmas that the proof relies upon should be properly referenced.986

4. Experimental Result Reproducibility987

Question: Does the paper fully disclose all the information needed to reproduce the main ex-988

perimental results of the paper to the extent that it affects the main claims and/or conclusions989

of the paper (regardless of whether the code and data are provided or not)?990

Answer: [Yes]991

Justification: We provide code and dataset in the supplementary material with instructions992

to reproduce the results.993

Guidelines:994

• The answer NA means that the paper does not include experiments.995

• If the paper includes experiments, a No answer to this question will not be perceived996

well by the reviewers: Making the paper reproducible is important, regardless of997

whether the code and data are provided or not.998

• If the contribution is a dataset and/or model, the authors should describe the steps taken999

to make their results reproducible or verifiable.1000

• Depending on the contribution, reproducibility can be accomplished in various ways.1001

For example, if the contribution is a novel architecture, describing the architecture fully1002

might suffice, or if the contribution is a specific model and empirical evaluation, it may1003

be necessary to either make it possible for others to replicate the model with the same1004

dataset, or provide access to the model. In general. releasing code and data is often1005

one good way to accomplish this, but reproducibility can also be provided via detailed1006

instructions for how to replicate the results, access to a hosted model (e.g., in the case1007

of a large language model), releasing of a model checkpoint, or other means that are1008

appropriate to the research performed.1009

• While NeurIPS does not require releasing code, the conference does require all submis-1010

sions to provide some reasonable avenue for reproducibility, which may depend on the1011

nature of the contribution. For example1012

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1013

to reproduce that algorithm.1014

(b) If the contribution is primarily a new model architecture, the paper should describe1015

the architecture clearly and fully.1016

(c) If the contribution is a new model (e.g., a large language model), then there should1017

either be a way to access this model for reproducing the results or a way to reproduce1018

the model (e.g., with an open-source dataset or instructions for how to construct1019

the dataset).1020

(d) We recognize that reproducibility may be tricky in some cases, in which case1021

authors are welcome to describe the particular way they provide for reproducibility.1022

In the case of closed-source models, it may be that access to the model is limited in1023

some way (e.g., to registered users), but it should be possible for other researchers1024

to have some path to reproducing or verifying the results.1025

5. Open access to data and code1026

Question: Does the paper provide open access to the data and code, with sufficient instruc-1027

tions to faithfully reproduce the main experimental results, as described in supplemental1028

material?1029

Answer: [Yes]1030

Justification: In the supplementary material, we provide code for our model, baselines, and1031

experimental datasets, as well as instructions for reproducing the results.1032

Guidelines:1033

• The answer NA means that paper does not include experiments requiring code.1034

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1035

public/guides/CodeSubmissionPolicy) for more details.1036

• While we encourage the release of code and data, we understand that this might not be1037

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1038
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including code, unless this is central to the contribution (e.g., for a new open-source1039

benchmark).1040

• The instructions should contain the exact command and environment needed to run to1041

reproduce the results. See the NeurIPS code and data submission guidelines (https:1042

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1043

• The authors should provide instructions on data access and preparation, including how1044

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1045

• The authors should provide scripts to reproduce all experimental results for the new1046

proposed method and baselines. If only a subset of experiments are reproducible, they1047

should state which ones are omitted from the script and why.1048

• At submission time, to preserve anonymity, the authors should release anonymized1049

versions (if applicable).1050

• Providing as much information as possible in supplemental material (appended to the1051

paper) is recommended, but including URLs to data and code is permitted.1052

6. Experimental Setting/Details1053

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1054

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1055

results?1056

Answer: [Yes]1057

Justification: In Appendix E, we provide training details, such as hyperparameters and1058

optimizer used.1059

Guidelines:1060

• The answer NA means that the paper does not include experiments.1061

• The experimental setting should be presented in the core of the paper to a level of detail1062

that is necessary to appreciate the results and make sense of them.1063

• The full details can be provided either with the code, in appendix, or as supplemental1064

material.1065

7. Experiment Statistical Significance1066

Question: Does the paper report error bars suitably and correctly defined or other appropriate1067

information about the statistical significance of the experiments?1068

Answer: [Yes]1069

Justification: Along with Mean Squared Error we also provide Standard deviation to report1070

the statistical significance of our results.1071

Guidelines:1072

• The answer NA means that the paper does not include experiments.1073

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1074

dence intervals, or statistical significance tests, at least for the experiments that support1075

the main claims of the paper.1076

• The factors of variability that the error bars are capturing should be clearly stated (for1077

example, train/test split, initialization, random drawing of some parameter, or overall1078

run with given experimental conditions).1079

• The method for calculating the error bars should be explained (closed form formula,1080

call to a library function, bootstrap, etc.)1081

• The assumptions made should be given (e.g., Normally distributed errors).1082

• It should be clear whether the error bar is the standard deviation or the standard error1083

of the mean.1084

• It is OK to report 1-sigma error bars, but one should state it. The authors should1085

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1086

of Normality of errors is not verified.1087

• For asymmetric distributions, the authors should be careful not to show in tables or1088

figures symmetric error bars that would yield results that are out of range (e.g. negative1089

error rates).1090

• If error bars are reported in tables or plots, The authors should explain in the text how1091

they were calculated and reference the corresponding figures or tables in the text.1092

8. Experiments Compute Resources1093

Question: For each experiment, does the paper provide sufficient information on the com-1094

puter resources (type of compute workers, memory, time of execution) needed to reproduce1095

the experiments?1096

Answer: [Yes]1097
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Justification: In Appendix E we provide information on hardware used for running experi-1098

ments.1099

Guidelines:1100

• The answer NA means that the paper does not include experiments.1101

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1102

or cloud provider, including relevant memory and storage.1103

• The paper should provide the amount of compute required for each of the individual1104

experimental runs as well as estimate the total compute.1105

• The paper should disclose whether the full research project required more compute1106

than the experiments reported in the paper (e.g., preliminary or failed experiments that1107

didn’t make it into the paper).1108

9. Code Of Ethics1109

Question: Does the research conducted in the paper conform, in every respect, with the1110

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1111

Answer: [Yes]1112

Justification: Yes, the research conducted in the paper conforms, in every aspect, with1113

Neurips Code of Ethics.1114
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1116

• If the authors answer No, they should explain the special circumstances that require a1117

deviation from the Code of Ethics.1118

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1119

eration due to laws or regulations in their jurisdiction).1120

10. Broader Impacts1121

Question: Does the paper discuss both potential positive societal impacts and negative1122

societal impacts of the work performed?1123

Answer: [Yes]1124

Justification: In Appendix B we have discuss broader impact of our work.1125

Guidelines:1126

• The answer NA means that there is no societal impact of the work performed.1127

• If the authors answer NA or No, they should explain why their work has no societal1128

impact or why the paper does not address societal impact.1129

• Examples of negative societal impacts include potential malicious or unintended uses1130

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1131

(e.g., deployment of technologies that could make decisions that unfairly impact specific1132
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to particular applications, let alone deployments. However, if there is a direct path to1135

any negative applications, the authors should point it out. For example, it is legitimate1136

to point out that an improvement in the quality of generative models could be used to1137

generate deepfakes for disinformation. On the other hand, it is not needed to point out1138
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models that generate Deepfakes faster.1140
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being used as intended and functioning correctly, harms that could arise when the1142

technology is being used as intended but gives incorrect results, and harms following1143
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strategies (e.g., gated release of models, providing defenses in addition to attacks,1146

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1147

feedback over time, improving the efficiency and accessibility of ML).1148

11. Safeguards1149

Question: Does the paper describe safeguards that have been put in place for responsible1150

release of data or models that have a high risk for misuse (e.g., pretrained language models,1151

image generators, or scraped datasets)?1152

Answer: [NA]1153

Justification: We do not use any such dataset/method.1154
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• The answer NA means that the paper poses no such risks.1156
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• Released models that have a high risk for misuse or dual-use should be released with1157

necessary safeguards to allow for controlled use of the model, for example by requiring1158

that users adhere to usage guidelines or restrictions to access the model or implementing1159

safety filters.1160

• Datasets that have been scraped from the Internet could pose safety risks. The authors1161

should describe how they avoided releasing unsafe images.1162

• We recognize that providing effective safeguards is challenging, and many papers do1163

not require this, but we encourage authors to take this into account and make a best1164

faith effort.1165
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Question: Are new assets introduced in the paper well documented and is the documentation1190

provided alongside the assets?1191

Answer: [Yes]1192

Justification: We provide our code and dataset with README file having instructions on1193

how to run the experiments.1194

Guidelines:1195

• The answer NA means that the paper does not release new assets.1196

• Researchers should communicate the details of the dataset/code/model as part of their1197

submissions via structured templates. This includes details about training, license,1198

limitations, etc.1199

• The paper should discuss whether and how consent was obtained from people whose1200

asset is used.1201
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1216
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