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Abstract

Graph retrieval based on subgraph isomorphism has several real-world applications1

such as scene graph retrieval, molecular fingerprint detection and circuit design.2

We present EINSMATCH, an early interaction graph neural network (GNN) tailored3

for this task, supervised by pairwise preference between graphs instead of explicit4

alignments. We propose several technical innovations in the design of EINS-5

MATCH. First, we compute embeddings of all nodes by passing messages within6

and across the two input graphs, guided by an injective alignment between their7

nodes. Second, we update this alignment in a lazy fashion over multiple rounds.8

Within each round, we run a layerwise GNN from scratch, based on the current9

state of the alignment. After the completion of one round of GNN, we use the10

last-layer embeddings to update the alignments, and proceed to the next round.11

Third, EINSMATCH incorporates a novel notion of node-pair partner interaction.12

Traditional early interaction computes attention between a node and its potential13

partners in the other graph, the attention then controlling messages passed across14

graphs. In contrast, we consider node pairs (not single nodes) as potential partners.15

Existence of an edge between the nodes in one graph and non-existence in the16

other provide vital signals for refining the alignment. Our experiments on several17

datasets show that the alignments get progressively refined with successive rounds,18

resulting in significantly better retrieval performance than existing methods. We19

demonstrate that all three innovations contribute to the enhanced accuracy.20

1 Introduction21

In graph retrieval based on subgraph isomorphism, the goal is to identify a subset of graphs from22

a corpus, denoted {Gc}, wherein each retrieved graph contains a subgraph isomorphic to a given23

query graph Gq. Numerous real-life applications, e.g., molecular fingerprint detection [6], scene24

graph retrieval [16], circuit design [29] and frequent subgraph mining [43], can be formulated using25

subgraph isomorphism. Akin to other retrieval systems, the key challenge is to efficiently score26

corpus graphs against queries.27

Recent work on neural graph retrieval [1, 2, 11, 22, 23, 35, 31, 46] has shown significant promise.28

Among them, Lou et al. [23, Neuromatch] and Roy et al. [35, IsoNet] focus specifically on subgraph29

isomorphism. They employ graph neural networks (GNNs) to obtain embeddings of query and corpus30

graphs and compute the relevance score using a form of order embedding [39]. In addition, IsoNet31

also approximates an injective alignment between the query and corpus graphs. These two models32

operate in a late interaction paradigm, where the representations of the query and corpus graphs are33

computed independent of each other. In contrast, GMN [22] is a powerful early interaction network34

for graph matching, where GNNs running on Gq and Gc interact with each other at every layer.35

Conventional wisdom suggests that early interaction is more accurate (even if slower) than late36

interaction, but GMN was outperformed by IsoNet. This is because of the following reasons.37

(1) GMN does not explicitly infer any alignment between Gq and Gc. The graphs are encoded by two38
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GNNs that interact with each other at every layer, mediated by attentions from each node in one graph39

on nodes in the other. These attentions are functions of node embeddings, so they change from layer40

to layer. While these attentions may be interpreted as approximate alignments, they induce at best41

non-injective mappings between nodes. (2) In principle, one wishes to propose a consistent alignment42

across all layers. However, GMN’s attention based ‘alignment’ is updated in every layer. (3) GMN43

uses a standard GNN that is known to be an over-smoother [36, 40]. Due to this, the attention weights44

(which depend on the over-smoothed node representations) also suffer from oversmoothing. These45

limitations raise the possibility of a third approach based on early interaction networks, enabled with46

explicit alignment structures, that have the potential to outperform both GMN and IsoNet.47

1.1 Our contributions48

We present EINSMATCH, an early interaction network for subgraph matching that maintains a chain49

of explicit, iteratively refined, injective, approximate alignments between the two graphs.50

Early interaction GNNs with alignment refinement We design early interaction networks for51

scoring graph pairs, that ensure the node embeddings of one graph are influenced by both its paired52

graph and the alignment map between them. In contrast to existing works, we model alignments as53

an explicit “data structure”. An alignment can be defined between either nodes or edges. This leads54

us to develop two variants of our model: EINSMATCH (Node) and EINSMATCH (Edge). Within55

EINSMATCH, we maintain a sequence of such alignments and refine them using GNNs acting on56

the two graphs. These alignments mediate the interaction between the two GNNs. In our work, we57

realize the alignments as a doubly stochastic approximation to a permutation matrix, which is an58

injective correspondence by design.59

Eager or lazy alignment updates In our work, we view the updates to the alignment maps as a60

form of gradient-based updates in a specific quadratic assignment problem or asymmetric Gromov-61

Wasserstein (GW) distance minimization [30, 41]. The general form of EINSMATCH allows updates62

that proceed lockstep with GNN layers (eager layer-wise updates), but it also allows lazy updates.63

Specifically, EINSMATCH can perform T rounds of updates to the alignment, each round including K64

layers of GNN message passing. During each round, the alignment is held fixed across all propagation65

layers in GNN. At the end of each round, we update the alignment by feeding the node embeddings66

into a neural Gumbel-Sinkhorn soft permutation generator [10, 26, 37].67

Node-pair partner interaction between graphs The existing remedies to counter oversmoothing [8,68

33, 40] entail extra computation; but they may be expensive in an early-interaction setting. In69

contrast to existing works [22] which perform node partner interaction, we perform node-pair partner70

interaction. Specifically, when computing the message on the edge (u, v) ∈ Gq, we borrow the71

representation of (u′, v′) ∈ Gc Consequently, the embedding of node u explicitly captures signals72

from nodes in Gc, that share soft correspondences with the neighbors of u in Gq .73

Experiments The design components of EINSMATCH and their implications are subtle — we report74

on extensive experiments that tease out their effects. Our experiments on real world datasets show75

that, EINSMATCH outperforms several state-of-the-art methods for graph retrieval by a substantial76

margin. Moreover, our results suggest that capturing information directly from node-pair partners77

can improve representation learning, as compared to taking information only from node partner.78

2 Preliminaries79

Notation Given graph G = (V,E), we use nbr(u) to denote the neighbors of a node u ∈ V . We80

use u→ v to indicate a message flow from node u to node v. Given a set of corpus graphs C = {Gc}81

and a query graph Gq , we denote y(Gc |Gq) as the binary relevance label of Gc for Gq . Motivated by82

several real life applications like substructure search in molecular graphs [12], object search in scene83

graphs [16], and text entailment [20], we consider subgraph isomorphism to significantly influence84

the relevance label, similar to previous works [23, 35]. Specifically, y(Gc |Gq) = 1 when Gq is a85

subgraph of Gc, and 0 otherwise. We define Cq+ ⊆ C as the set of corpus graphs that are relevant86

to Gq and set Cq− = C\Cq+. Mildly overloading notation, we use P to indicate a ‘hard’ (0/1)87

permutation matrix or its ‘soft’ doubly-stochastic relaxation. Bn denotes the set of all n× n doubly88

stochastic matrices, and Πn denotes the set of all n× n permutation matrices.89

Graph neural network [14, 18, 21, 22, 38, 42] (GNN) Given a graph G = (V,E), a GNN90

initializes node representations {h0(u) : u ∈ V } using node-local features. Then, messages are91
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passed between neighboring nodes in K propagation layers. In the kth layer, a node u receives92

messages from its neighbors, aggregates them, and then combines the result with its state after the93

(k − 1)th layer:94

hk(u) = combθ
(
hk−1(u),

∑
v∈nbr(u) {msgθ(hk−1(u),hk−1(v))}

)
(1)

Here, msgθ(·) and combθ(·, ·) are suitable networks with parameters collectively called θ. Edges95

may also be featurized and influence the messages that are aggregated [24]. The node representations96

at the final propagation layer K can be collected into the matrix H = {hK(u) |u ∈ V }. Given a97

node u ∈ Gq and a node u′ ∈ Gc, we denote the embeddings of u and u′ after the propagation layer98

k as h(q)
k (u) and h

(c)
k (u′) respectively. H(q) and H(c) denote the Kth-layer node embeddings of99

Gq and Gc, collected into matrices.100

Using Eq. (1) on Gq and Gc separately, we can formulate a late interaction network, where we first101

compute the set of vectors H(q) and H(c) independent of the other graph, and then compare these102

sets following the general pattern ŷ(Gc |Gq) = sim
(
H(c) |H(q)). Since subgraph isomorphism103

defines an asymmetric relevance, sim
(
H(c) |H(q)) ̸= sim

(
H(q) |H(c)). We may also define a104

distance ∆(H(c) |H(q)) which is inversely related to sim
(
H(c) |H(q)).105

In an early interaction network, H(q) depends on Gc and H(c) depends on Gq for any given (Gq, Gc)106

pair. Formally, one should write H(q | c) and H(c | q) instead of H(q) and H(c) respectively for an107

early interaction network, but for simplicity, we will continue using H(q) and H(c).108

Our goal Given a set of corpus graphs C = {Gc | c ∈ [|C|]}, our high-level goal is to build a graph109

retrieval model so that, given a query Gq , it can return the corpus graphs {Gc} which are relevant to110

Gq . To that end, we seek to develop (1) a GNN-based early interaction model, and (2) an appropriate111

distance measure ∆(· | ·), so that ∆(H(c) |H(q)) is an accurate predictor of y(Gc |Gq), at least to112

the extent that ∆(·|·) is effective for ranking candidate corpus graphs in response to a query graph.113

3 Proposed early-interaction GNN with multi-round alignment refinement114

In this section, we first write down the subgraph isomorphism task as an instance of the quadratic115

assignment problem (QAP) or the Gromov-Wasserstein (GW) distance optimization task. Then, we116

design EINSMATCH, by building upon this formulation.117

3.1 Subgraph isomorphism as Gromov-Wasserstein distance optimization118

QAP or GW formulation with asymmetric cost We are given a graph pair Gq and Gc padded119

with appropriate number of nodes to ensure |Vq| = |Vc| = n (say). Let their adjacency matrices be120

Aq,Ac ∈ {0, 1}n×n. Consider the family of hard permutation matrices P ∈ Πn where P [u, u′] = 1121

indicates u ∈ Vq is “matched” to u′ ∈ Vc. Then, Gq is a subgraph of Gc, if for some permutation122

matrix P , the matrix Aq is covered by PAcP
⊤, i.e., for each pair (u, v), whenever we have123

Aq[u, v] = 1, we will also have PAcP
⊤[u, v] = 1. This condition can be written as Aq ≤ PAcP

⊤.124

We can regard a deficit in coverage as a cost or distance:125

cost(P ;Aq,Ac) =
∑

u∈[n],v∈[n]

[(
Aq − PAcP

⊤)
+

]
[u, v] (2)

=
∑

u,v∈[n]

∑
u′,v′∈[n](Aq[u, v]−Ac[u

′, v′])+ P [u, u′] P [v, v′] (3)

Here, [·]+ = max {·, 0} is the ReLU function, applied elementwise. The function cost(P ;Aq,Ac)126

can be driven down to zero using a suitable choice of P iff Gq is a subgraph of Gc. This naturally127

suggests the relevance distance128

∆(Gc |Gq) = min
P∈Πn

cost(P ;Aq,Ac) (4)

Xu et al. [41] demonstrate that this QAP is a realization of the Gromov-Wassterstein distance129

minimization in a graph setting.130

Updating P with projected gradient descent As shown in Benamou et al. [3], Peyré et al. [30], Xu131

et al. [41], one approach is to first relax P into a doubly stochastic matrix, which serves as a continuous132

approximation of the discrete permutation, and then update it using projected gradient descent (PGD).133

Here, the soft permutation Pt−1 is updated to Pt at time-step t by solving the following linear optimal134
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(a) Pipeline of EinsMatch
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)

(b) Node pair partner  interaction in EinsMatch-Node

(c) Node pair partner interaction in EinsMatch-Edge

Figure 1: Overview of EINSMATCH. Panel (a) shows the pipeline of EINSMATCH. Given a graph
pair (Gq, Gc), we execute T rounds, each consisting of K GNN layer propagations. After a round
t, we use the node embeddings to update the node alignment P = Pt from its previous estimate
P = Pt−1. Within each round t ∈ [T ], we compute the node embeddings of Gq by gathering signals
from Gc and vice-versa, using GNN embeddings in the previous round and the node-alignment map
Pt. The alignment Pt remains consistent across all propagation layers k ∈ [K] and is updated at the
end of round t. Panel (b) shows our proposed node pair partner interaction in EINSMATCH (Node).
When computing the message value of the node pair (u, v), we also feed the node embeddings of the
partners u′ and v′ in addition to the embeddings of the pairs (u, v), where u′ and v′ is approximately
aligned with u and v, respectively. Panel (c) shows the node pair partner interaction in EINSMATCH
(Edge). In contrast to EINSMATCH (Node), here we feed the information from the message value of
the partner pair (u′, v′) instead of their node embeddings into the message passing network msgθ.

transport (OT) problem, regularized with the entropy of {P [u, v] |u, v ∈ [n]} with a temperature τ .135

Pt ← argmin
P∈Bn

Trace
(
P⊤∇P cost(P ;Aq,Ac)

∣∣
P=Pt−1

)
+ τ

∑
u,v

P [u, v] · logP [u, v]. (5)

Such an OT problem is solved using the iterative Sinkhorn-Knopp algorithm [10, 37, 26]. Similar to136

other combinatorial optimization problems on graphs, a QAP (3) does not capture the coverage cost in137

the presence of dense node or edge features, where two nodes or edges may exhibit graded degrees of138

similarity represented by continuous values. Furthermore, the binary values of the adjacency matrices139

result in inadequate gradient signals in ∇P cost(·). Additionally, the computational bottleneck of140

solving a fresh OT problem in each PGD step introduces a significant overhead, especially given the141

large number of pairwise evaluations required in typical learning-to-rank setups.142

3.2 Design of EINSMATCH (Node)143

Building upon the insights from the above GW minimization (2) and the successive refinement144

step (5), we build EINSMATCH (Node), the first variant of our proposed early interaction model.145

Node-pair partner interactions between graphs For simpler exposition, we begin by describing a146

synthetic scenario, where P is a hard node permutation matrix, which induces the alignment map as147

a bijection π : Vq → Vc, so that π(a) = b if P [a, b] = 1. We first initialize layer k = 0 embeddings148

as h
(q)
0 (u) = Initθ(feature(u)) using a neural network Initθ. (Throughout, h(c)

k (u) are treated149

likewise.) Under the given alignment map π, a simple early interaction model would update the node150

embeddings as follows:151

h
(q)
k+1(u) = combθ

(
h
(q)
k (u),

∑
v∈nbr(u) msgθ(h

(q)
k (u),h

(q)
k (v)), h

(c)
k (π(u))

)
(6)

In the above expression, the update layer uses representation of the partner node u′ ∈ Vc during152

the message passing step, to compute h
(q)
k+1(u), the embedding of node u ∈ Vq. Li et al. [22] use153

a similar update protocol, by approximating h
(c)
k (π(u)) =

∑
u′∈Vc

a
(k)
u′→uh

(c)
k (u′), where a

(k)
u′→u is154

the kth layer attention from u ∈ Vq to potential partner u′ ∈ Vc, with
∑

u′∈Vc
a
(k)
u′→u = 1. Instead of155

regarding only nodes as potential partners, EINSMATCH will regard node pairs as partners. Given156

(u, v) ∈ Eq , the partners (π(u), π(v)) ∈ Ec should then greatly influence the intensity of assimilation157

of h(c)
k (u′) into h

(c)
k+1(u). The first key innovation in EINSMATCH is to replace (6) to recognize and158
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implement this insight:159

h
(q)
k+1(u) = combθ

(
[h

(q)
k (u),h

(c)
k (π(u))],∑

v∈nbr(u) msgθ
(
[h

(q)
k (u),h

(c)
k (π(u))], [h

(q)
k (v),h

(c)
k (π(v))]

))
(7)

Embeddings h(c)
k+1(u

′) for nodes u′ ∈ Vc are updated likewise in a symmetric manner. The network160

msgθ is provided embeddings from partners π(u), π(v) of u, v ∈ Vq — this allows h
(•)
k+1(u) to161

capture information from all nodes in the paired graph, that match with the (k + 1)-hop neighbors162

of u.163

Multi-round lazy refinement of node alignment In reality, we are not given any alignment map π.164

This motivates our second key innovation beyond prior models [1, 22, 23, 35], where we decouple165

GNN layer propagation from updates to P . To achieve this, EINSMATCH (Node) executes T rounds,166

each consisting of K layer propagations in both GNNs. At the end of each round t, we refine the167

earlier alignment Pt−1 to the next estimate Pt, which will be used in the next round. Henceforth, we168

will use the double subscript t, k instead of the single subscript k as in traditional GNNs. We denote169

the node embeddings at layer k and round t by h
(q)
t,k(u),h

(c)
t,k(u

′) ∈ Rdimh for u ∈ Vq and u′ ∈ Vc,170

which are (re-)initialized with node features h•
t,0 for each round t. We gather these into matrices171

H
(q)
t,k = [h

(q)
t,k(u) |u ∈ Vq] ∈ Rn×dimh and H

(c)
t,k = [h

(c)
t,k(u

′) |u′ ∈ Vc] ∈ Rn×dimh . (8)

P no longer remains an oracular hard permutation matrix, but becomes a doubly stochastic matrix172

indexed by rounds, written as Pt. At the end of round t, a differentiable aligner module takes H(q)
t,K173

and H
(c)
t,K as inputs and outputs a doubly stochastic node alignment (relaxed permutation) matrix Pt174

as follows:175

Pt = NodeAlignerRefinementϕ
(
H

(q)
t,K ,H

(c)
t,K

)
(9)

= GumbelSinkhorn
(
LRLϕ(H

(q)
t,K) LRLϕ(H

(c)
t,K)⊤

)
∈ Bn (10)

In the above expression, GumbelSinkhorn(•) performs iterative Sinkhorn normalization on the input176

matrix added with Gumbel noise [26]; LRLϕ is a neural module consisting of two linear layers with177

a ReLU activation after the first layer. As we shall see next, Pt is used to gate messages flowing178

across from one graph to the other during round t+1, i.e., while computing H
(q)
t+1,1:K and H

(c)
t+1,1:K .179

The soft alignment Pt is kept frozen for the duration of all layers in round t+ 1. Pt[u, u
′] may be180

interpreted as the probability that u is assigned to u′, which naturally requires that Pt should be181

row-equivariant (column equivariant) to the shuffling of the node indices of Gq (Gc). As shown in182

Appendix D, the above design choice (10) ensures this property.183

Updating node representation using early-interaction GNN Here, we describe the early in-184

teraction GNN for the query graph Gq. The GNN on the corpus graph Gc follows the exact same185

design and is deferred to Appendix E.1. In the initial round (t = 1), since there is no prior alignment186

estimate Pt=0, we employ the traditional late interaction GNN (1) to compute all layers H(q)
1,1:K and187

H
(c)
1,1:K separately. These embeddings are then used to estimate Pt=1 using Eq. (10). For subsequent188

rounds (t > 1), given embeddings H(q)
t,1:K , and the alignment estimate matrix Pt, we run an early189

interaction GNN from scratch. We start with a fresh initialization of the node embeddings as before;190

i.e., h(q)
t+1,0(u) = Initθ(feature(u)). For each subsequent propagation layer k + 1 (k ∈ [0,K − 1]),191

we approximate (7) as follows. We read previous-round, same-layer embeddings h(c)
t,k(u

′) of nodes192

u′ from the other graph Gc, incorporate the alignment strength Pt[u, u
′], and aggregate these to get193

an intermediate representation of u that is sensitive to Pt and Gc.194

z
(q)
t+1,k(u) = interθ

(
h
(q)
t+1,k(u),

∑
u′∈Vc

h
(c)
t,k(u

′)Pt[u, u
′]
)

(11)

Here, interθ is a neural network that computes interaction between the graph pairs; z(q)
t+1,k(u) provides195

a soft alignment guided representation of [h(q)
k (u),h

(c)
k (π(u))] in Eq. (7), which can now be relaxed196

to the form197

h
(q)
t+1,k+1(u) = combθ

(
z
(q)
t+1,k(u),

∑
v∈nbr(u) msgθ(z

(q)
t+1,k(u), z

(q)
t+1,k(v))

)
(12)
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In the above expression, we explicitly feed z
(q)
t+1,k(v), v ∈ nbr(u) in the msgθ network, capturing198

embeddings of nodes in the corpus Gc aligned with the neighbors of node u ∈ Vq in h
(q)
t+1,k+1(u).199

This allows the model to perform node-pair partner interaction. Instead, if we were to feed only200

h
(q)
t+1,k(u) into the msgθ network, then it would only perform node partner interaction. In this case,201

the computed embedding for u would be based solely on signals from nodes in the paired graph that202

directly correspond to u, therefore missing additional context from other neighbourhood nodes.203

Distant supervision of alignment Finally, at the end of T rounds, we express the relevance204

distance ∆(Gc |Gq) as a soft distance between the set H(q)
T,K = [h

(q)
T,K(u) |u ∈ Vq] and H

(c)
T,K =205

[h
(c)
T,K(u′) |u′ ∈ Vc], measured as206

∆θ,ϕ(Gc |Gq) =
∑

u

∑
d ReLU(H

(q)
T,K [u, d]− (PTH

(c)
T,K)[u, d]) (13)

Our focus is on graph retrieval applications. It is unrealistic to assume direct supervision from a gold207

alignment map P ∗. Instead, training query instances are associated with pairwise preferences between208

two corpus graphs, in the form ⟨Gq, Gc+, Gc−⟩, meaning that, ideally, we want ∆θ,ϕ(Gc−|Gq) ≥209

γ +∆θ,ϕ(Gc+|Gq), where γ > 0 is a margin hyperparameter. This suggests a minimization of the210

standard hinge loss as follows:211

minθ,ϕ
∑

q∈Q

∑
c+∈Cq+,c−∈Cq−

[γ +∆θ,ϕ(Gc+ |Gq)−∆θ,ϕ(Gc− |Gq)]+ (14)

This loss is back-propagated to train model weights θ in combθ, interθ,msgθ and weights ϕ in the212

Gumbel-Sinkhorn network.213

Multi-layer eager alignment variant Having set up the general multi-round framework of214

EINSMATCH, we introduce a structurally simpler variant that updates P eagerly after every layer,215

eliminating the need to re-initialize node embeddings every time we update P . The eager variant216

retains the benefits of node-pair partner interactions, while ablating EINSMATCH toward GMN.217

Updating P via Sinkhorn iterations is expensive compared to a single GNN layer. In practice, we see218

a non-trivial tradeoff between computation cost, end task accuracy, and the quality of our injective219

alignments, depending on the value of K for eager updates, and the values (T,K) for lazy updates.220

3.3 Extension of EINSMATCH (Node) to EINSMATCH (Edge)221

We now extend EINSMATCH (Node) to EINSMATCH (Edge) which uses explicit edge alignment for222

interaction across GNN and relevance distance surrogate, starting with the multi-round refinement223

protocol for edge alignment.224

Multi-round refinement of edge alignment In EINSMATCH (Edge), we maintain a soft edge225

permutation matrix S which is frozen at S = St−1 within each round t ∈ [T ] and gets refined226

after every round t as St−1 → St. Similar to EINSMATCH (Node), within each round t, GNN227

runs from scratch: it propagates messages across layers k ∈ [K] and St−1 assists it to capture228

cross-graph signals. Here, in addition to node embeddings h
(•)
t,k , we also use edge embeddings229

m
(q)
t,k(e), m

(c)
t,k(e

′) ∈ Rdimm at each layer k and each round t, which capture the information230

about the subgraph k ≤ K hop away from the edges e and e′. Similar to Eqn. (8), we define231

M
(q)
t,k = [m

(q)
t,k(e)]e∈Eq

, and M
(c)
t,k = [m

(c)
t,k(e

′)]e′∈Ec
. M (•)

t,0 are initialized using the features of the232

nodes connected by the edges, and possibly local edge features. Given the embeddings M (q)
t,K and233

M
(c)
t,K computed at the end of round t, an edge aligner module takes these embedding matrices as234

input and outputs a soft edge permutation matrix St, similar to the update of Pt in Eq. (10).235

St = EdgeAlignerRefinementϕ
(
M

(q)
t,K ,M

(c)
t,K

)
(15)

= GumbelSinkhorn(LRLϕ(M
(q)
t,K) LRLϕ(M

(c)
t,K)⊤) (16)

Here, M (•)
t,K are appropriately padded to ensure that they have the same number of rows.236

Edge alignment-induced early interaction GNN For t = 1, we start with a late interaction model237

using vanilla GNN (1) and obtain St=1 using Eq. (16). Having computed the edge embeddings238

m
(•)
t,1:K(•) and node embeddings h(•)

t,1:K(•) upto round t, we compute St and use it to build a fresh239

early interaction GNN for round t+ 1. To this end, we adapt the GNN guided by Pt in Eqs. (11)–240
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(12),to the GNN guided by St. We overload the notations for neural modules and different embedding241

vectors from EINSMATCH (Node), whenever their roles are similar.242

Starting with the same initialization as in EINSMATCH (Node), we perform the cross-graph inter-243

action guided by the soft edge permutation matrix St, similar to Eq. (11). Specifically, we use244

the embeddings of edges {e′ = (u′, v′)} ∈ Ec, computed at layer k at round t, which share soft245

alignments with an edge e = (u, v) ∈ Eq , to compute z
(q)
t+1,k(e) and z

(q)
t+1,k(e

′) as follows:246

z
(q)
t+1,k(e) = interθ

(
m

(q)
t+1,k(e),

∑
e′∈Ec

m
(c)
t,k(e

′)St[e, e
′]
)

(17)

Finally, we update the node embeddings h(•)
t+1,k+1 for propagation layer k + 1 as247

h
(q)
t+1,k+1(u) = combθ

(
h
(q)
t+1,k(u),

∑
a∈nbr(u) msgθ(h

(q)
t+1,k(u),h

(q)
t+1,k(a), z

(q)
t+1,k((u, a)))

)
(18)

In this case, we perform the cross-graph interaction at the edge level rather than the node level. Hence,248

msgθ acquires cross-edge signals separately as z(•)
t+1,k. Finally, we use h

(•)
t+1,k+1 and z

(•)
t+1,k+1 to249

update m
(•)
t+1,k+1 as follows:250

m
(q)
t+1,k+1

(
(u, v)

)
= msgθ

(
h
(q)
t+1,k+1(u),h

(q)
t+1,k+1(v), z

(q)
t+1,k((u, v))

)
(19)

Likewise, we develop m
(c)
t+1,k+1 for corpus graph Gc. Note that m(q)

t+1,k+1((u, v)) captures signals251

not only from the matched pair (u′, v′), but also signals from the nodes in Gc which share corre-252

spondences with the neighbor nodes of u and v. Finally, we pad zero vectors to [m
(q)
T,K(e)]e∈Eq253

and [m
(c)
T,K(e′)]e′∈Ec

to build the matrices M (q)
T,K and M

(c)
T,K with same number of rows, which are254

finally used to compute the relevance distance255

∆θ,ϕ(Gc |Gq) =
∑

u

∑
d ReLU(M

(q)
T,K [e, d]− (STM

(c)
T,K)[e, d]). (20)

4 Experiments256

We report on a comprehensive evaluation of EINSMATCH on six real datasets and analyze the efficacy257

of the key novel design choices. In Appendix G, we provide results of additional experiments.258

4.1 Experimental setup259

Datasets We use six real world datasets in our experiments, viz., AIDS, Mutag, PTC-FM (FM),260

PTC-FR (FR), PTC-MM (MM) and PTC-MR (MR), which were also used in [27, 35]. Appendix F261

provides the details about dataset generation and their statistics.262

State-of-the-art baselines We compare our method against eleven state-of-the-art methods, viz.,263

(1) GraphSim [2] (2) GOTSim [11], (3) SimGNN [1], (4) EGSC [31], (5) H2MN [45], (6) Neuro-264

match [23], (7) GREED [32], (8) GEN [22], (9) GMN [22] (10) IsoNet (Node) [35], and (11) IsoNet265

(Edge) [35]. Among them, Neuromatch, GREED, IsoNet (Node) and IsoNet (Edge) apply asymmetric266

hinge distances between query and corpus embeddings for ∆(Gc |Gq), specifically catered towards267

subgraph matching, similar to our method in Eqs. (13) and (20). GMN and GEN use symmetric268

Euclidean distance between their (whole-) graph embeddings g(q) (for query) and g(c) (for corpus) as269

||g(q) − g(c)|| in their paper [22], which is not suitable for subgraph matching and therefore, results270

in poor performance. Hence, we change it to ∆(Gc |Gq) = [g(q) − g(c)]+. The other methods first271

compute the graph embeddings, then fuse them using a neural network and finally apply a nonlinear272

function on the fused embeddings to obtain the relevance score.273

Training and evaluation protocol Given a fixed corpus set C, we split the query set Q into 60%274

training, 15% validation and 25% test set. We train all the models on the training set by minimizing a275

ranking loss (14). During the training of each model, we use five random seeds. Given a test query q′,276

we rank the corpus graphs C in the decreasing order of ∆θ,ϕ(Gc |Gq′) computed using the trained277

model. We evaluate the quality of the ranking by measuring Average Precision (AP) and HITS@20,278

described in Appendix F. Finally, we report mean average precision (MAP) and mean HITS@20,279

across all the test queries. By default, we set the number of rounds T = 3, the number of propagation280

layers in GNN K = 5. In Appendix F, we discuss the baselines, hyperparameter setup and the281

evaluation metrics in more detail.282
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Metrics→ Mean Average Precision (MAP) HITS @ 20
AIDS Mutag FM FR MM MR AIDS Mutag FM FR MM MR

GraphSim [2] 0.356 0.472 0.477 0.423 0.415 0.453 0.145 0.257 0.261 0.227 0.212 0.23
GOTSim [11] 0.324 0.272 0.355 0.373 0.323 0.317 0.112 0.088 0.147 0.166 0.119 0.116
SimGNN [1] 0.341 0.283 0.473 0.341 0.298 0.379 0.138 0.087 0.235 0.155 0.111 0.160
EGSC [31] 0.505 0.476 0.609 0.607 0.586 0.58 0.267 0.243 0.364 0.382 0.348 0.325
H2MN [45] 0.267 0.276 0.436 0.412 0.312 0.243 0.076 0.084 0.200 0.189 0.119 0.069
Neuromatch [23] 0.489 0.576 0.615 0.559 0.519 0.606 0.262 0.376 0.389 0.350 0.282 0.385
GREED [32] 0.472 0.567 0.558 0.512 0.546 0.528 0.245 0.371 0.316 0.287 0.311 0.277
GEN [22] 0.557 0.605 0.661 0.575 0.539 0.631 0.321 0.429 0.448 0.368 0.292 0.391
GMN [22] 0.622 0.710 0.730 0.662 0.655 0.708 0.397 0.544 0.537 0.45 0.423 0.49
IsoNet (Node) [35] 0.659 0.697 0.729 0.68 0.708 0.738 0.438 0.509 0.525 0.475 0.493 0.532
IsoNet (Edge) [35] 0.690 0.706 0.783 0.722 0.753 0.774 0.479 0.529 0.613 0.538 0.571 0.601
EINSM. (Node) 0.825 0.851 0.888 0.855 0.838 0.874 0.672 0.732 0.797 0.737 0.702 0.755
EINSM. (Edge) 0.847 0.858 0.902 0.875 0.902 0.902 0.705 0.749 0.813 0.769 0.809 0.803

Table 2: Comparison of the two variants of EINSMATCH (EINSMATCH (Node) and EINSMATCH
(Edge)) against all the state-of-the-art graph retrieval methods, across all six datasets. Performance is
measured in terms average precision (MAP) and mean HITS@20. In all cases, we used 60% training,
15% validation and 25% test sets. The numbers highlighted with green and yellow indicate the best,
second best method respectively, whereas the numbers with blue indicate the best method among the
baselines. (MAP values for EINSMATCH (Edge) across FM, MM and MR were verified to be not
exactly the same, but they match up to the third decimal place.)

AIDS Mutag FM FR MM MR

N
od

e{Eager 0.756 0.81 0.859 0.802 0.827 0.841

Lazy 0.825 0.851 0.888 0.855 0.838 0.874

E
dg

e{Eager 0.795 0.805 0.883 0.812 0.862 0.886

Lazy 0.847 0.858 0.902 0.875 0.902 0.902

Table 3: Lazy multi-round vs. eager multi-layer. First
(Last) two rows report MAP for EINSMATCH (Node)
(EINSMATCH (Edge)). Green shows the best method

AIDS Mutag FM FR MM MR

L
az

y {Node partner 0.776 0.829 0.851 0.819 0.844 0.84

EINSM. (Node) 0.825 0.851 0.888 0.855 0.838 0.874
E

ag
er

{
Node partner 0.668 0.783 0.821 0.752 0.753 0.794

EINSM. (Node) 0.756 0.81 0.859 0.802 0.827 0.841

Table 4: Node partner vs. node pair partner interac-
tion. First (Last) two rows report MAP for multi-round
(multi-layer) update. Green shows the best method.

4.2 Results283

Comparison with baselines First, we compare EINSMATCH (Node) and EINSMATCH (Edge)284

against all the baselines, across all datasets. In Table 2, we report the results. The key observations285

are as follows: (1) EINSMATCH (Node) and EINSMATCH (Edge) outperform all the baselines by286

significant margins across all datasets. EINSMATCH (Edge) consistently outperforms EINSMATCH287

(Node). This is because edge alignment allows us to compare the graph pairs more effectively than288

node alignment. A similar effect was seen for IsoNet (Edge) vs. IsoNet (Node) [35]. (2) Among all289

state-of-the-art competitors, IsoNet (Edge) performs the best followed by IsoNet (Node). Similar290

to us, they also use edge and node alignments respectively. However, IsoNet does not perform any291

interaction between the graph pairs and the alignment is computed once only during the computation292

of ∆(Gc |Gq). This results in modest performance compared to EINSMATCH. (3) GMN uses293

“attention” to estimate the alignment between graph pairs, which induces a non-injective mapping.294

Therefore, despite being an early interaction model, it is mostly outperformed by IsoNet, which uses295

injective alignments.296

Lazy vs. eager updates In lazy multi-round updates, the alignment matrices remain unchanged297

across all propagation layers and are updated only after the GNN completes its K-layer message298

propagations. To evaluate its effectiveness, we compare it against the eager multi-layer update299

(described at the end of Section 3.2), where the GNN executes its K-layer message propagations300

only once; the alignment map is updated across K layers; and, the alignment at kth layer is used to301

compute the embeddings at (k + 1)th layer. In Table 3, we compare the performance in terms MAP,302

which shows that lazy multi-round updates significantly outperform multi-layer updates.303

Node partner vs. node-pair partner interaction To understand the benefits of node-pair partner304

interaction, we contrast EINSMATCH (Node) against another variant of our method, which performs305

node partner interaction rather than node pair partner interaction, similar to Eq. (6). For lazy306

multi-round updates, we compute the embeddings as follows:307

h
(q)
t+1,k+1(u) = combθ(h

(q)
t+1,k(u),

∑
v∈nbr(u) msgθ(h

(q)
t,k(u),h

(q)
t,k(v)),

∑
u′∈Vc

Pt[u, u
′]h

(c)
t,k(u

′))

For eager multi-layer updates, we compute the embeddings as:308

h
(q)
k+1(u) = combθ(h

(q)
k (u),

∑
v∈nbr(u) msgθ(h

(q)
k (u),h

(q)
k (v)),

∑
u′∈Vc

Pk[u, u
′]h

(c)
k (u′))
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Figure 5: Empirical probability density of similarity between the estimated alignments and the
true alignments P ∗,S∗ for both multi-round and multi-layer update strategies across different
stages of updates (t for multi-round and k for multi-layer), for AIDS. Similarity is measured using
p(Tr(P⊤

t P ∗)), p(Tr(S⊤
t S∗)) for multi-round lazy updates and p(Tr(P⊤

k P ∗)), p(Tr(S⊤
k S∗)) for

multi-layer eager updates.

Table 4 summarizes the results, which shows that EINSMATCH (Node) (node partner pair) performs309

significantly better than Node partner for both multi-round lazy updates (top-two rows) and multi-layer310

eager updates (bottom tow rows).311

Quality of injective alignments Next we compare between multi-round and multi-layer update312

strategies in terms of their ability to refine the alignment matrices, as the number of updates of these313

matrices increases. For multi-round (layer) updates, we instrument the alignments Pt and St (Pk314

and Sk) for different rounds t ∈ [T ] (layers k ∈ [K]). Specifically, we look into the distribution315

of the similarity between the learned alignments Pt,St and the correct alignments P ∗,S∗ (using316

combinatorial routine), measured using the inner products Tr(P⊤
t P ∗) and Tr(S⊤

t S∗) for different317

t. Similarly, we compute Tr(P⊤
k P ∗) and Tr(S⊤

k S∗) for different k ∈ [K]. Figure 5 summarizes318

the results, which shows that (1) as t or k increases, the learned alignments become closer to the319

gold alignments; (2) multi-round updates refine the alignments approximately twice as faster than320

the multi-layer variant. The distribution of Tr(P⊤
t P ∗) at t = 1 in multi-round strategy is almost321

always close to Tr(P⊤
k P ∗) for k = 2. Note that, our aligner networks learn to refine the Pt and322

St through end-to-end training, without using any form of supervision from true alignments or the323

gradient computed in Eq. (5).324
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(a) Node, AIDS
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(b) Edge, AIDS
Figure 6: Trade-off between MAP and inference
time (batch size=128).

Accuracy-inference time trade-off Here, we an-325

alyze the accuracy and inference time trade-off. We326

vary T and K for EINSMATCH’s lazy multi-round327

variant, and vary K for EINSMATCH’s eager multi-328

layer variant and for GMN. Figure 6 summarizes329

the results. Notably, the eager multi-layer variant330

achieves the highest accuracy for K = 8 on the AIDS331

dataset, despite the known issue of oversmoothing in332

GNNs for large K. This unexpected result may be333

due to our message passing components, which involve terms like
∑

u′ P [u, u′]h(u′), effectively334

acting as a convolution between alignment scores and embedding vectors. This likely enables P to335

function as a filter, countering the oversmoothing effect.336

5 Conclusion337

We introduce EINSMATCH as an early-interaction network for estimating subgraph isomorphism.338

EINSMATCH learns to identify explicit alignments between query and corpus graphs despite having339

access to only pairwise preferences and not explicit alignments during training. We design a GNN340

that uses an alignment estimate to propagate messages, then uses the GNN’s output representations341

to refine the alignment. Experiments across several datasets confirm that alignment refinement is342

achieved over several rounds. Design choices such as using node-pair partner interaction (instead of343

node partner) and lazy updates (over eager) boost the performance of our architecture, making it the344

state-of-the-art in subgraph isomorphism based subgraph retrieval. We also demonstrate the accuracy345

v/s inference time trade offs for EINSMATCH, which show how different knobs can be tuned to utilize346

our models under regimes with varied time constraints.347

This study can be extended to graph retrieval problems which use different graph similarity measures,348

such as maximum common subgraph or graph edit distance. Extracting information from node-pairs349

is an exciting idea and can be widely used to improve graph neural networks working on multiple350

graphs at once.351
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Iteratively Refined Early Interaction Alignment for Subgraph474

Matching and Retrieval475

(Appendix)476

A Limitations477

We find two limitations of our method each of which could form the basis of detailed future studies.478

1. Retrieval systems greatly benefit from the similarity function being hashable. This can479

improve the inference time multi-fold while losing very little, if at all any, performance,480

making the approach ready for production environments working under tight time constraints.481

The design of a hash function for an early interaction network like ours is unknown and482

seemingly difficult. In fact, such a hashing procedure is not known even for predecessors483

like IsoNet (Edge) or GMN, and this is an exciting future direction.484

2. Our approach does not explicitly differentiate between nodes or edges that may belong to485

different classes. This can be counterproductive when there exist constraints that prevent486

the alignment of two nodes or edges with different labels. While the network is designed to487

process node and edge features, it might not be enough to rule out alignments that violate488

the said constraint. Such constraints could also exist for node-pairs, such as in knowledge489

graphs with hierarchical relationships between entity types, and are not taken into account490

by our model. Extending our work to handle such restrictions is an interesting problem to491

consider.492

B Related work493

In this section, we discuss different streams of work that are related to and have influenced the study.494

B.1 Graph Representation Learning495

Graph neural networks (GNN) [14, 22, 21, 18, 42, 38] have emerged as a widely applicable approach496

for graph representation learning. A graph neural network computes the embedding of a node497

by aggregating the representations of its neighbors across K steps of message passing, effectively498

combining information from K-hop neighbors. GNNs were first used for graph similarity computation499

by Li et al. [22], who enriched the architecture with attention to predict isomorphism between two500

graphs. Attention acts as a mechanism to transfer information from the representation of one graph501

to that of the other, thus boosting the performance of the approach. Chen et al. [7] enriched the502

representation of graphs by capturing the subgraph around a node effectively through a structure503

aware transformer architecture.504

B.2 Differentiable combinatorial solvers505

We utilize a differentiable gadget to compute an injective alignment, which is a doubly stochastic506

matrix. The differentiability is crucial to the training procedure as it enables us to backpropagate507

through the alignments. The GumbelSinkhorn operator, which performs alternating normalizations508

across rows and columns, was first proposed by Sinkhorn and Knopp [37] and later used for the509

Optimal Transport problem by Cuturi [10]. Other methods to achieve differentiability include adding510

random noise to the inputs to discrete solvers [4] and designing probabilistic loss functions [17]. A511

compilation of such approaches towards constrained optimization on graphs through neural techniques512

is presented in [19].513

B.3 Graph Similarity Computation and Retrieval514

Several different underlying measures have been proposed for graph similarity computation, including515

full graph isomorphism [22], subgraph isomorphism [23, 35], graph edit distance (GED) [2, 11, 13,516

28, 44] and maximum common subgraph (MCS) [2, 11, 34]. Bai et al. [2] proposed GraphSim517

towards the GED and MCS problems, using convolutional neural network based scoring on top of518

graph similarity matrices. GOTSim [11] explicitly computes the alignment between the two graphs519

by studying the optimal transformation cost. GraphSim [2] utilizes both graph-level and node-level520

signals to compute a graph similarity score. NeuroMatch [23] evaluates, for each node pair across the521

two graphs, if the neighborhood of one node is contained in the neighborhood of another using order522

embeddings [25]. GREED [32] proposed a Siamese graph isomorphism network, a late interaction523
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model to tackle the GED problem and provided supporting theoretical guarantees. Zhang et al. [45]524

propose an early interaction model, using hypergraphs to learn higher order node similarity. Each525

hypergraph convolution contains a subgraph matching module to learn cross graph similarity. Qin526

et al. [31] trained a slower attention-based network on multi-level features from a GNN and distilled527

its knowledge into a faster student model. Roy et al. [35] used the GumbelSinkhorn operator528

as a differentiable gadget to compute alignments in a backpropagation-friendly fashion and also529

demonstrated the utility of computing alignments for edges instead of nodes.530

C Broader Impact531

This work can be directly applied to numerous practical applications, such as drug discovery and532

circuit design, which are enormously beneficial for the society and continue to garner interest from533

researchers and practitioners worldwide. The ideas introduced in this paper have benefitted from and534

can benefit the information retrieval community as well, beyond the domain of graphs. However,535

malicious parties could use this technology for deceitful purposes, such as identifying and targeting536

specific social circles on online social networks (which can be represented as graphs). Such pros and537

cons are characteristic of every scientific study and the authors consider the positives to far outweigh538

the negatives.539

D Network architecture of different components of EINSMATCH540

EINSMATCH models consist of three components - an encoder, a message-passing network and a541

node/edge aligner. We provide details about each of these components below. For convenience,542

we represent a linear layer with input dimension a and output dimension b as Linear(a, b) and543

a linear-ReLU-linear network with Linear(a, b), Linear(b, c) layers with ReLU activation in the544

middle as LRL(a, b, c).545

D.1 Encoder546

The encoder transforms input node/edge features before they are fed into the message-passing network.547

For models centred around node alignment like EINSMATCH (Node), the encoder refers to Initθ and548

is implemented as a Linear(1, 10) layer. The edge vectors are not encoded and passed as-is down to549

the message-passing network. For edge-based models like EINSMATCH (Edge), the encoder refers550

to both Initθ,node and Initθ,edge, which are implemented as Linear(1, 10) and Linear(1, 20) layers551

respectively.552

D.2 GNN553

Within the message-passing framework, we use node embeddings of size dimh = 10 and edge554

embeddings of size dimm = 20. We specify each component of the GNN below.555

• interθ combines the representation of the current node/edge (h•) with that from the other556

graph, which are together fed to the network by concatenation. For node-based and edge-557

based models, it is implemented as LRL(20, 20, 10) and LRL(40, 40, 20) networks respec-558

tively. In particular, we ensure that the input dimension is twice the size of the output559

dimension, which in turn equals the intermediate embedding dimension dim(z).560

• msgθ is used to compute messages by combining intermediate embeddings z• of nodes561

across an edge with the representation of that edge. For node-based models, the edge562

vector is a fixed vector of size 1 while the intermediate node embeddings z• are vectors of563

dimension 10, resulting in the network being a Linear(21, 20) layer. For edge-based models,564

the edge embedding is the m vector of size 20 which requires msgθ to be a Linear(40, 20)565

layer. Note that the message-passing network is applied twice, once to the ordered pair566

(u, v) and then to (v, u) and the outputs thus obtained are added up. This is to ensure node567

order invariance for undirected edges by design.568

• combθ combines the representation of a node z• with aggregated messages received by it569

from all its neighbors. It is modelled as a GRU where the node representation (of size 10)570

is the initial hidden state and the aggregated message vector (of size 20) is the only element571

of an input sequence which updates the hidden state to give us the final node embedding h•.572

14



D.3 Node aligner573

The node aligner takes as input two sets of node vectors H(q) ∈ Rn×10 and H(c) ∈ Rn×10574

representing Gq and Gc respectively. n refers to the number of nodes in the corpus graph (the query575

graph is padded to meet this node count). We use LRLϕ as a LRL(10, 16, 16) network (refer Eq. 10).576

D.4 Edge aligner577

The design of the edge aligner is similar to the node aligner described above in Section D.3, except578

that its inputs are sets of edge vectors M (q) ∈ Re×20 and M (c) ∈ Re×20. e refers to the number of579

edges in the corpus graph (the query graph is padded to meet this edge count). We use LRLϕ as a580

LRL(20, 16, 16) network (refer Eq. 16).581

D.5 GumbelSinkhorn operator582

The GumbelSinkhorn operator consists of the following operations -583

D0 = exp(Din/τ) (21)
Dt+1 = RowNorm (ColumnNorm(Dt)) (22)
Dout = lim

t→∞
Dt (23)

The matrix Dout obtained after this set of operations will be a doubly-stochastic matrix. The input584

Din in our case is the matrix containing the dot product of the node/edge embeddings of the query585

and corpus graphs respectively. τ represents the temperature and is fixed to 0.1 in all our experiments.586

Theorem Equation 10 results in a permutation matrix that is row-equivariant (column-) to the587

shuffling of nodes in Gq (Gc).588

Proof To prove the equivariance of Eq. 10, we need to show that given a shuffling (permutation) of589

query nodes Z ∈ Πn which modifies the node embedding matrix to ZḢ
(q)
t,K , the resulting output of590

said equation would change to ZPt. Below, we consider any matrices with Z in the suffix as being591

an intermediate expression in the computation of NodeAlignerRefinementϕ(ZH
(q)
t,K ,H

(c)
t,K).592

It is easy to observe that the operators LRLϕ (a linear-ReLU-linear network applied to a matrix),593

RowNorm, ColumnNorm and element-wise exponentiation (exp), division are all permutation-594

equivariant since a shuffling of the vectors fed into these will trivially result in the output vectors595

getting shuffled in the same order. Thus, we get the following sequence of operations596

Din,Z = LRLϕ(ZH
(q)
t,K) LRLϕ(H

(c)
t,K)⊤ = Z · LRLϕ(H

(q)
t,K) LRLϕ(H

(c)
t,K)⊤Din = ZDin (24)

D0,Z equals exp(Din,Z/τ), which according to above equation would lead to D0,Z = ZD0. We597

can then inductively show using Eq. 22 and the equivariance of row/column normalization, assuming598

the following holds till t, that599

Dt+1,Z = RowNorm (ColumnNorm(Dt,Z)) = RowNorm (ColumnNorm(ZDt)) (25)
= RowNorm (Z · ColumnNorm(Dt)) = Z · RowNorm (ColumnNorm(Dt)) = ZDt+1 (26)

The above equivariance would also hold in the limit, resulting in the doubly stochastic matrix600

Dout,Z = ZDout, which concludes the proof. ■601

A similar proof can be followed to show column equivariance for a shuffling in the corpus nodes.602

E Variants of our models and GMN, used in the experiments603

E.1 Multi-round refinement of EINSMATCH (Node) for the corpus graph604

• Initialize:605

h
(c)
0 (u′) = Initθ(feature(u

′)), (27)
• Update the GNN embeddings as follows:606

z
(c)
t+1,k(u

′) = interθ

(
h
(c)
t+1,k(u

′),
∑

u∈Vq
h
(q)
t,k(u)P

⊤
t [u′, u]

)
, (28)

607

h
(c)
t+1,k+1(u

′) = combθ

(
z
(c)
t+1,k(u

′),
∑

v′∈nbr(u′) msgθ(z
(c)
t+1,k(u

′), z
(c)
t+1,k(v

′))
)

(29)
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E.2 Multi-layer refinement of EINSMATCH (Node)608

• Initialize:609

h
(q)
0 (u) = Initθ(feature(u)), (30)

• The node alignment Pk is updated across layers. P0 is set to a matrix of zeros. For k > 0,610

the following equation is used:611

Pk = NodeAlignerRefinementϕ
(
H

(q)
k ,H

(c)
k

)
(31)

= GumbelSinkhorn
(
LRLϕ(H

(q)
k ) LRLϕ(H

(c)
k )⊤

)
(32)

• We update the GNN embeddings as follows:612

z
(q)
k (u) = interθ

(
h
(q)
k (u),

∑
u′∈Vc

h
(c)
k (u′)Pk[u, u

′]
)
, (33)

h
(q)
k+1(u) = combθ

(
z
(q)
k (u),

∑
v∈nbr(u) msgθ(z

(q)
k (u), z

(q)
k (v))

)
(34)

E.3 Multi-layer refinement of EINSMATCH (Edge)613

• Initialize:614

h
(q)
0 (u) = Initθ,node(feature(u)), (35)

m
(q)
0 (e) = Initθ,edge(feature(e)), (36)

• The edge alignment is updated across layers. S0 is set to a matrix of zeros. For k > 0, the615

following equation is used:616

Sk = EdgeAlignerRefinementϕ
(
M

(q)
k ,M

(c)
k

)
(37)

= GumbelSinkhorn
(
LRLϕ(M

(q)
k ) LRLϕ(M

(c)
k )⊤

)
(38)

• We update the GNN node and edge embeddings as follows:617

z
(q)
k (e) = interθ

(
m

(q)
k (e),

∑
e′∈Ec

m
(c)
k (e′)Sk[e, e

′]
)
, (39)

h
(q)
k+1(u) = combθ

(
h
(q)
k (u),

∑
a∈nbr(u) msgθ(h

(q)
k (u),h

(q)
k (a), z

(q)
k ((u, a)))

)
(40)

m
(q)
k+1((u, v)) = msgθ(h

(q)
k+1(u),h

(q)
k+1(v), z

(q)
k ((u, v))) (41)

E.4 Node partner (with additional MLP) variant of EINSMATCH (Node)618

Initialization and transition between rounds is same as in EINSMATCH (Node). Below, we note the619

change in GNN update equations:620

z
(q)
t+1,k(u) = interθ

(
h
(q)
t+1,k(u),

∑
u′∈Vc

h
(c)
t,k(u

′)Pt[u, u
′]
)

(42)

h
(q)
t+1,k+1(u) = combθ

(
z
(q)
t+1,k(u),

∑
v∈nbr(u) msgθ(h

(q)
t+1,k(u),h

(q)
t+1,k(v))

)
(43)

Note that Eq. 42 is the same as Eq. 11. The node embedding enriched with node pair information is621

passed only as a seeding vector to the combθ network and not into the msgθ network. This helps622

establish whether including information from node-pair partners in the messages is crucial towards623

EINSMATCH (Node) or not. As pointed out through the additional experiments in Appendix G.4,624

using h(q) instead of z(q) in the msgθ network harms the performance of the model, making it clear625

that the representations of messages greatly benefit from node-pair partner information.626

E.5 Node pair partner (msg only) variant of EINSMATCH (Node)627

Initialization and transition between rounds is same as in EINSMATCH (Node). Below, we note the628

change in GNN update equations:629

z
(q)
t+1,k(u) = interθ

(
h
(q)
t+1,k(u),

∑
u′∈Vc

h
(c)
t,k(u

′)Pt[u, u
′]
)

(44)
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h
(q)
t+1,k+1(u) = combθ

(
h
(q)
t+1,k(u),

∑
v∈nbr(u) msgθ(z

(q)
t+1,k(u), z

(q)
t+1,k(v))

)
(45)

Note that Eq. 42 is the same as Eq. 11. The node embedding enriched with node pair information is630

passed only to the msgθ network and not as the seeding vector in the combθ network. This helps631

pinpoint the exact mechanism through which node pair partner interaction is assisting EINSMATCH632

(Node). As pointed out through the additional experiments in Appendix G.4, using h(q) instead of633

z(q) as seeding vector in the combθ network does not harm the performance of the model by a lot,634

highlighting that including node-pair partner information in the message representations is reasonably635

good for improving performance.636

E.6 Variants of GMN637

GMN (K-layer early interaction): In GMN, two graphs Gq and Gc are matched via GNN-style638

message passing. Two kinds of messages are passed in each layer k: within each graph, for (j, i) ∈ E,639

mj→i(k) = msgwithin(hj(k), hi(k), xji) (46)
and across graphs (i ∈ Vq, j

′ ∈ Vc or vice versa),640

µj′→i(k) = msgacross(hj′(k), hi(k)) (47)
Embeddings of nodes in Vq are updated as641

h(q)
u (k + 1) = comb

(
h(q)
u (k), aggr

(v,u)∈Eq

(m(k, v→u)), aggr
v∈Vc

(µ(k, v→u))
)

(48)

and vice versa from nodes in Vq to nodes in Vc. These node embeddings can be collected into H(q)(k)642

and H(c)(k). We will elide superscipts (q), (c) when there is no risk of confusion.643

After the last layer, vector sets H(q)(K) and H(c)(K) can be compared as before to implement644

early-interaction graph matching.645

17



F Additional details about experimental setup646

F.1 Datasets647

We use six datasets from the TUDatasets collection [27] for benchmarking our methods with respect648

to existing baselines. Lou et al. [23] devised a method to sample query and corpus graphs from the649

graphs present in these datasets to create their training data. We adopt it for the task of subgraph650

matching. In particular, we choose a node u ∈ G as the center of a Breadth First Search (BFS) and651

run the algorithm till |V | nodes are traversed, where the range of |V | is listed in Table 7 (refer to652

the Min and Max columns for |Vq| and |Vc). This process is independently performed for the query653

and corpus splits (with different ranges for graph size) to obtain 300 query graphs and 800 corpus654

graphs. The set of query graphs is split into train, validation and test splits of 180 (60%), 45 (15%)655

and 75 (25%) graphs respectively. Ground truth labels are computed for each query-corpus graph656

pair using the VF2 algorithm [9, 15, 23] implemented in the Networkx library. Various statistics657

about the datasets are listed in Table 7. pairs(y) denotes the number of pairs in the dataset with gold658

label y, where y ∈ {0, 1}.659

Mean |Vq| Min |Vq| Max |Vq| Mean |Eq| Mean |Vc| Min |Vc| Max |Vc| Mean |Ec| pairs(1) pairs(0) pairs(1)
pairs(0)

AIDS 11.25 6 14 11.25 18.87 16 23 18.87 41001 198999 0.2118
Mutag 13.27 6 17 13.27 19.89 16 24 19.89 42495 197505 0.2209
FM 11.35 6 14 11.35 18.81 16 24 18.81 40516 199484 0.2085
FR 11.39 6 14 11.39 18.79 16 24 18.79 39829 200171 0.2043
MM 11.37 6 14 11.37 18.79 16 24 18.79 40069 199931 0.2056
MR 11.49 6 14 11.49 18.78 16 24 18.78 40982 199018 0.2119

Table 7: Statistics for the 6 datasets borrowed from the TUDatasets collection [27]

F.2 Baselines660

GraphSim, GOTSim, SimGNN, Neuromatch, GEN, GMN, IsoNet (Node), IsoNet (Edge): We661

utilized the code from official implementation of [35] 1. Some for loops were vectorized to improve662

the running time of GMN.663

EGSC: The official implementation 2 is refactored and integrated into our code.664

H2MN: We use the official code from 3.665

GREED: We use the official code from 4. The model is adapted from the graph edit distance (GED)666

task to the subgraph isomorphism task, using a hinge scoring layer.667

The number of parameters involved in all models (our methods and baselines) are reported in Table 8.668

Number of parameters

GraphSim [2] 3909
GOTSim [11] 304
SimGNN [1] 1671
EGSC [31] 3948
H2MN [45] 2974
Neuromatch [23] 3463
GREED [32] 1840
GEN [22] 1750
GMN [22] 2050
IsoNet (Node) [35] 1868
IsoNet (Edge) [35] 2028
EINSMATCH (Node) 2498
EINSMATCH (Edge) 4908

Table 8: Number of parameters for all models used in comparison

669

1https://github.com/Indradyumna/ISONET/
2https://github.com/canqin001/Efficient_Graph_Similarity_Computation
3https://github.com/cszhangzhen/H2MN
4https://github.com/idea-iitd/greed
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F.3 Calculation of Metrics: Mean Average Precision (MAP), HITS@K, Precision@K and670

Mean Reciprocal Rank (MRR)671

Given a ranked list of corpus graphs C = {Gc} for a test query Gq , sorted in the decreasing order of672

∆θ,ϕ(Gc|Gq), let us assume that the cth
+ relevant graph is placed at position pos(c+) ∈ {1, ..., |C|} in673

the ranked list. Then Average Precision (AP) is computed as:674

AP(q) =
1

|Cq+|
∑

c+∈[|Cq+|]

c+
pos(c+)

(49)

Mean average precision is defined as
∑

q∈Q AP(q)/|Q|.675

Precision@K(q) = 1
K # relevant graphs corresponding to Gq till rank K. Finally we report the676

mean of Precision@K(q) across queries.677

Reciprocal rank or RR(q) is the inverse of the rank of the topmost relevant corpus graph corresponding678

to Gq in the ranked list. Mean reciprocal rank (MRR) is average of RR(q) across queries.679

HITS@K for a query Gq is defined as the fraction of positively labeled corpus graphs that appear680

before the K th negatively labeled corpus graph. Finally, we report the average of HITS@K across681

queries.682

Note that HITS@K is a significantly aggressive metric compared to Precision@K and MRR, as can683

be seen in Tables 11 and 12.684

F.4 Details about hyperparameters685

All models were trained using early stopping with MAP score on the validation split as a stopping686

criterion. For early stopping, we used a patience of 50 with a tolerance of 10−4. We used the Adam687

optimizer with the learning rate as 10−3 and the weight decay parameter as 5 · 10−4. We set batch688

size to 128 and maximum number of epochs to 1000.689

Seed Selection and Reproducibility Five integer seeds were chosen uniformly at random from the690

range [0, 104] resulting in the set {1704, 4929, 7366, 7474, 7762}. EINSMATCH (Node), GMN and691

IsoNet (Edge) were trained on each of these 5 seeds for all 6 datasets. Note that these seeds do692

not control the training-dev-test splits but only control the initialization. Since the overall problem693

is non-convex, in principle, one should choose the best initial conditions leading to local minima.694

Hence, for all models, we choose the best seed, based on validation MAP score, is shown in Table 9.695

AIDS Mutag FM FR MM MR

GraphSim [2] 7762 4929 7762 7366 4929 7474
GOTSim [11] 7762 7366 1704 7762 1704 7366
SimGNN [1] 7762 7474 1704 4929 4929 7762
EGSC [31] 4929 1704 7762 4929 4929 7366
H2MN [45] 7762 4929 7366 1704 4929 7474
Neuromatch [23] 7366 4929 7762 7762 1704 7366
GREED [32] 7762 1704 1704 7474 1704 1704
GEN [22] 1704 4929 7474 7762 1704 1704
GMN [22] 7366 4929 7366 7474 7474 7366
IsoNet (Node) [35] 7474 7474 7474 1704 4929 1704
IsoNet (Edge) [35] 7474 7474 7474 1704 4929 1704
GMN [22] 7366 4929 7366 7474 7474 7366
EINSMATCH (Node) 7762 7762 7474 7762 7762 7366

Table 9: Best seeds for all models. For IsoNet (Edge), GMN and EINSMATCH (Node), these
are computed based on MAP score on the validation split at convergence. For other models, the
identification occurs after 10 epochs of training.

EINSMATCH (Edge) and all ablations on top of EINSMATCH (Node) were trained using the best696

seeds for EINSMATCH (Node) (as in Tables 3, 4 and 15). Ablations of GMN were trained with the697

best GMN seeds.698
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For baselines excluding IsoNet (Edge), models were trained on all 5 seeds for 10 epochs and the MAP699

scores on the validation split were considered. Full training with early stopping was resumed only for700

the best seed per dataset. This approach was adopted to reduce the computational requirements for701

benchmarking.702

Margin Selection For GraphSim, GOTSim, SimGNN, Neuromatch, GEN, GMN and IsoNet (Edge),703

we use the margins determined by Roy et al. [35] for each dataset. For IsoNet (Node), the margins704

prescribed for IsoNet (Edge) were used for standardization. For EINSMATCH (Node), EINSMATCH705

(Edge) and ablations, a fixed margin of 0.5 is used.706

Procedure for baselines EGSC, GREED, H2MN: They are trained on five seeds with a margin of 0.5707

for 10 epochs and the best seed is chosen using the validation MAP score at this point. This seed is708

also used to train a model with a margin of 0.1 for 10 epochs. The better of these models, again using709

MAP score on the validation split, is identified and retrained till completion using early stopping.710

AIDS Mutag FM FR MM MR

GraphSim [2] 0.5 0.5 0.5 0.5 0.5 0.5
GOTSim [11] 0.1 0.1 0.1 0.1 0.1 0.1
SimGNN [1] 0.5 0.1 0.5 0.1 0.5 0.5
EGSC [31] 0.1 0.5 0.1 0.5 0.1 0.5
H2MN [45] 0.5 0.5 0.5 0.5 0.5 0.1
Neuromatch [23] 0.5 0.5 0.5 0.5 0.5 0.5
GREED [32] 0.5 0.5 0.5 0.5 0.5 0.5
GEN [22] 0.5 0.5 0.5 0.5 0.5 0.5
GMN [22] 0.5 0.5 0.5 0.5 0.5 0.5
IsoNet (Node) [35] 0.5 0.5 0.5 0.5 0.5 0.5
IsoNet (Edge) [35] 0.5 0.5 0.5 0.5 0.5 0.5

Table 10: Best margin for baselines used in comparison.

F.5 Software and Hardware711

All experiments were run with Python 3.10.13 and PyTorch 2.1.2. EINSMATCH (Node), EINS-712

MATCH (Edge), GMN, IsoNet (Edge) and ablations on top of these were trained on Nvidia RTX713

A6000 (48 GB) GPUs while other baselines like GraphSim, GOTSim etc. were trained on Nvidia714

A100 (80 GB) GPUs.715

As an estimate of training time, we typically spawn 3 training runs of EINSMATCH (Node) or EINS-716

MATCH (Edge) on one Nvidia RTX A6000 GPU, each of which takes 300 epochs to conclude on717

average, with an average of 6-12 minutes per epoch. This amounts to 2 days of training. Overloading718

the GPUs by spawning 6 training runs per GPU increases the training time marginally to 2.5 days.719

Additionally, we use wandb [5] to manage and monitor the experiments.720

F.6 License721

GEN, GMN, GOTSim, GREED and EGSC are available under the MIT license, while SimGNN is722

public under the GNU license. The licenses for GraphSim, H2MN, IsoNet (Node), IsoNet (Edge),723

Neuromatch could not be identified. The authors were unable to identify the license of the TUDatasets724

repository [27], which was used to compile the 6 datasets used in this paper.725
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G Additional experiments726

G.1 Comparison against baselines727

In Tables 11 and 12, we report the Mean Average Precision (MAP), HITS@20, MRR and Pre-728

cision@20 scores for several baselines as well as the four approaches discussed in our paper -729

multi-layer and multi-round variants of EINSMATCH (Node) and EINSMATCH (Edge). Multi-round730

EINSMATCH (Edge) outperforms all other models with respect to all metrics, closely followed by731

multi-round EINSMATCH (Node) and multi-layer EINSMATCH (Edge) respectively. Among the732

baselines, IsoNet (Edge) is the best-performing model, closely followed by IsoNet (Node) and GMN.733

For MRR, Precision@20, the comparisons are less indicative of the significant boost in performance734

obtained by EINSMATCH, since these are not aggressive metrics from the point of view of information735

retrieval.736

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

GraphSim [2] 0.356 ± 0.016 0.472 ± 0.027 0.477 ± 0.016 0.423 ± 0.019 0.415 ± 0.017 0.453 ± 0.018

GOTSim [11] 0.324 ± 0.015 0.272 ± 0.012 0.355 ± 0.014 0.373 ± 0.018 0.323 ± 0.015 0.317 ± 0.013

SimGNN [1] 0.341 ± 0.019 0.283 ± 0.012 0.473 ± 0.016 0.341 ± 0.015 0.298 ± 0.012 0.379 ± 0.015

EGSC [31] 0.505 ± 0.02 0.476 ± 0.022 0.609 ± 0.018 0.607 ± 0.019 0.586 ± 0.019 0.58 ± 0.018

H2MN [45] 0.267 ± 0.014 0.276 ± 0.012 0.436 ± 0.015 0.412 ± 0.016 0.312 ± 0.014 0.243 ± 0.008

Neuromatch [23] 0.489 ± 0.024 0.576 ± 0.029 0.615 ± 0.019 0.559 ± 0.024 0.519 ± 0.02 0.606 ± 0.021

GREED [32] 0.472 ± 0.021 0.567 ± 0.027 0.558 ± 0.02 0.512 ± 0.021 0.546 ± 0.021 0.528 ± 0.019

GEN [22] 0.557 ± 0.021 0.605 ± 0.028 0.661 ± 0.021 0.575 ± 0.02 0.539 ± 0.02 0.631 ± 0.018

GMN [22] 0.622 ± 0.02 0.710 ± 0.025 0.730 ± 0.018 0.662 ± 0.02 0.655 ± 0.02 0.708 ± 0.017

IsoNet (Node) [35] 0.659 ± 0.022 0.697 ± 0.026 0.729 ± 0.018 0.68 ± 0.022 0.708 ± 0.016 0.738 ± 0.017

IsoNet (Edge) [35] 0.690 ± 0.02 0.706 ± 0.026 0.783 ± 0.017 0.722 ± 0.02 0.753 ± 0.015 0.774 ± 0.016

multi-layer EINSM. (Node) 0.756 ± 0.019 0.81 ± 0.021 0.859 ± 0.015 0.802 ± 0.018 0.827 ± 0.015 0.841 ± 0.013

multi-layer EINSM. (Edge) 0.795 ± 0.018 0.805 ± 0.022 0.883 ± 0.013 0.812 ± 0.016 0.862 ± 0.013 0.886 ± 0.011

multi-round EINSM. (Node) 0.825 ± 0.016 0.851 ± 0.018 0.888 ± 0.012 0.855 ± 0.015 0.838 ± 0.015 0.874 ± 0.011

multi-round EINSM. (Edge) 0.847 ± 0.016 0.858 ± 0.019 0.902 ± 0.012 0.875 ± 0.014 0.902 ± 0.01 0.902 ± 0.01

HITS@20
AIDS Mutag FM FR MM MR

GraphSim [2] 0.145 ± 0.011 0.257 ± 0.027 0.261 ± 0.015 0.227 ± 0.015 0.212 ± 0.014 0.23 ± 0.015

GOTSim [11] 0.112 ± 0.011 0.088 ± 0.009 0.147 ± 0.011 0.166 ± 0.014 0.119 ± 0.011 0.116 ± 0.011

SimGNN [1] 0.138 ± 0.016 0.087 ± 0.008 0.235 ± 0.015 0.155 ± 0.013 0.111 ± 0.009 0.160 ± 0.013

EGSC [31] 0.267 ±0.023 0.243 ±0.02 0.364 ±0.02 0.382 ±0.024 0.348 ±0.023 0.325 ±0.021

H2MN [45] 0.076 ± 0.009 0.084 ± 0.007 0.200 ± 0.012 0.189 ± 0.013 0.119 ± 0.011 0.069 ± 0.004

Neuromatch [23] 0.262 ± 0.025 0.376 ± 0.034 0.389 ± 0.022 0.350 ± 0.025 0.282 ± 0.019 0.385 ± 0.025

GREED [32] 0.245 ± 0.025 0.371 ± 0.034 0.316 ± 0.027 0.287 ± 0.019 0.311 ± 0.024 0.277 ± 0.023

GEN [22] 0.321 ± 0.026 0.429 ± 0.035 0.448 ± 0.03 0.368 ± 0.026 0.292 ± 0.024 0.391 ± 0.025

GMN [22] 0.397 ± 0.029 0.544 ± 0.035 0.537 ± 0.027 0.45 ± 0.027 0.423 ± 0.025 0.49 ± 0.026

IsoNet (Node) [35] 0.438 ± 0.028 0.509 ± 0.034 0.525 ± 0.026 0.475 ± 0.03 0.493 ± 0.023 0.532 ± 0.025

IsoNet (Edge) [35] 0.479 ± 0.029 0.529 ± 0.035 0.613 ± 0.026 0.538 ± 0.029 0.571 ± 0.023 0.601 ± 0.027

multi-layer EINSM. (Node) 0.57 ± 0.029 0.672 ± 0.033 0.744 ± 0.027 0.657 ± 0.031 0.68 ± 0.025 0.707 ± 0.024

multi-layer EINSM. (Edge) 0.626 ± 0.029 0.671 ± 0.035 0.775 ± 0.026 0.67 ± 0.028 0.743 ± 0.024 0.776 ± 0.021

multi-round EINSM. (Node) 0.672 ± 0.027 0.732 ± 0.03 0.797 ± 0.024 0.737 ± 0.026 0.702 ± 0.025 0.755 ± 0.022

multi-round EINSM. (Edge) 0.705 ± 0.028 0.749 ± 0.032 0.813 ± 0.023 0.769 ± 0.026 0.809 ± 0.019 0.803 ± 0.02

Table 11: Replication of Table 2 with standard error. Comparison of the two variants of EINS-
MATCH (EINSMATCH (Node) and EINSMATCH (Edge)) against all the state-of-the-art graph retrieval
methods, across all six datasets. Performance is measured in terms average precision MAP and
HITS@20. In all cases, we used 60% training, 15% validation and 25% test sets. The first five
methods apply a neural network on the fused graph-pair representations. The next six methods apply
asymmetric hinge distance between the query and corpus embeddings similar to our method. The
numbers with green and yellow indicate the best, second best method respectively, whereas the
numbers with blue indicate the best method among the baselines. (MAP values for EINSMATCH
(Edge) across FM, MM and MR are verified to be not exactly same, but they take the same value
until the third decimal).
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Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

GraphSim [2] 0.71 ±0.039 0.795 ±0.037 0.885 ±0.029 0.817 ±0.032 0.818 ±0.034 0.789 ±0.037

GOTSim [11] 0.568 ±0.038 0.584 ±0.037 0.775 ±0.037 0.716 ±0.042 0.459 ±0.045 0.525 ±0.047

SimGNN [1] 0.533 ±0.038 0.644 ±0.043 0.866 ±0.031 0.753 ±0.038 0.669 ±0.04 0.638 ±0.046

EGSC [31] 0.894 ±0.026 0.75 ±0.041 0.943 ±0.021 0.909 ±0.023 0.904 ±0.025 0.932 ±0.022

H2MN [45] 0.46 ±0.047 0.565 ±0.042 0.822 ±0.035 0.817 ±0.034 0.386 ±0.039 0.62 ±0.041

Neuromatch [23] 0.823 ±0.035 0.855 ±0.035 0.88 ±0.028 0.929 ±0.022 0.87 ±0.027 0.895 ±0.026

GREED [32] 0.789 ±0.035 0.805 ±0.034 0.834 ±0.033 0.834 ±0.032 0.894 ±0.028 0.759 ±0.039

GEN [22] 0.865 ±0.028 0.895 ±0.029 0.889 ±0.026 0.878 ±0.028 0.814 ±0.034 0.878 ±0.026

GMN [22] 0.877 ±0.027 0.923 ±0.023 0.949 ±0.019 0.947 ±0.019 0.928 ±0.023 0.922 ±0.022

IsoNet (Node) [35] 0.916 ±0.024 0.887 ±0.029 0.977 ±0.013 0.954 ±0.018 0.956 ±0.018 0.954 ±0.018

IsoNet (Edge) [35] 0.949 ±0.02 0.926 ±0.026 0.973 ±0.013 0.956 ±0.018 0.98 ±0.011 0.948 ±0.019

multi-layer EINSM. (Node) 0.956 ±0.018 0.954 ±0.018 1.0 ±0.0 0.978 ±0.013 0.98 ±0.011 1.0 ±0.0

multi-layer EINSM. (Edge) 0.984 ±0.011 0.976 ±0.014 0.991 ±0.009 0.987 ±0.009 0.987 ±0.009 0.993 ±0.007

multi-round EINSM. (Node) 0.993 ±0.007 0.971 ±0.014 1.0 ±0.0 0.993 ±0.007 0.993 ±0.007 0.993 ±0.007

multi-round EINSM. (Edge) 1.0 ±0.0 0.983 ±0.012 0.991 ±0.009 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0

Precision@20
AIDS Mutag FM FR MM MR

GraphSim [2] 0.474 ±0.025 0.577 ±0.033 0.679 ±0.023 0.617 ±0.028 0.604 ±0.028 0.638 ±0.026

GOTSim [11] 0.386 ±0.024 0.325 ±0.021 0.479 ±0.027 0.519 ±0.03 0.409 ±0.027 0.421 ±0.03

SimGNN [1] 0.44 ±0.026 0.33 ±0.022 0.626 ±0.026 0.471 ±0.029 0.414 ±0.026 0.512 ±0.032

EGSC [31] 0.646 ±0.023 0.608 ±0.034 0.79 ±0.022 0.766 ±0.021 0.739 ±0.023 0.74 ±0.021

H2MN [45] 0.28 ±0.026 0.34 ±0.023 0.587 ±0.024 0.563 ±0.026 0.399 ±0.028 0.308 ±0.017

Neuromatch [23] 0.615 ±0.03 0.689 ±0.032 0.809 ±0.022 0.725 ±0.027 0.694 ±0.027 0.751 ±0.023

GREED [32] 0.591 ±0.024 0.661 ±0.03 0.689 ±0.026 0.642 ±0.028 0.699 ±0.028 0.624 ±0.029

GEN [22] 0.674 ±0.024 0.721 ±0.03 0.783 ±0.023 0.678 ±0.022 0.64 ±0.027 0.759 ±0.021

GMN [22] 0.751 ±0.022 0.82 ±0.023 0.852 ±0.02 0.809 ±0.019 0.783 ±0.022 0.832 ±0.018

IsoNet (Node) [35] 0.791 ±0.022 0.803 ±0.029 0.866 ±0.018 0.803 ±0.022 0.844 ±0.015 0.863 ±0.016

IsoNet (Edge) [35] 0.822 ±0.022 0.812 ±0.028 0.896 ±0.016 0.851 ±0.017 0.877 ±0.014 0.875 ±0.017

multi-layer EINSM. (Node) 0.873 ±0.018 0.897 ±0.018 0.935 ±0.012 0.917 ±0.012 0.93 ±0.013 0.931 ±0.012

multi-layer EINSM. (Edge) 0.905 ±0.015 0.883 ±0.021 0.958 ±0.01 0.93 ±0.01 0.953 ±0.01 0.976 ±0.005

multi-round EINSM. (Node) 0.932 ±0.012 0.943 ±0.011 0.957 ±0.01 0.961 ±0.008 0.949 ±0.011 0.963 ±0.008

multi-round EINSM. (Edge) 0.946 ±0.012 0.931 ±0.014 0.973 ±0.007 0.963 ±0.008 0.98 ±0.005 0.987 ±0.003

Table 12: MRR and Precision@20 of corresponding models from Table 2 with standard error.
Comparison of the two variants of EINSMATCH (EINSMATCH (Node) and EINSMATCH (Edge))
against all the state-of-the-art graph retrieval methods, across all six datasets. Performance is
measured in terms MRR and Precision@20. In all cases, we used 60% training, 15% validation and
25% test sets. The first five methods apply a neural network on the fused graph-pair representations.
The next six methods apply asymmetric hinge distance between the query and corpus embeddings
similar to our method. The numbers with green and yellow indicate the best, second best method
respectively, whereas the numbers with blue indicate the best method among the baselines.

G.2 HITS@20, MRR and Precision@20 for multi-round EINSMATCH and multi-layer737

EINSMATCH738

Table 13 compares multi-round and multi-layer EINSMATCH with respect to different metrics. We739

observe that multi-round EINSMATCH outperforms multi-layer EINSMATCH by a significant margin740

when it comes to all metrics, both when the models are node-based or edge-based. This reinforces741

the observations from MAP scores noted earlier in Table 3. Note that a minor exception occurs for742

MRR but the scores are already so close to 1 that this particular metric can be discounted and our key743

observation above still stands.744

G.3 Refinement of alignment matrix across rounds and layers in multi-round EINSMATCH745

and multi-layer EINSMATCH746

The node (edge) alignment calculated after round t is denoted as Pt (St). We accumulate such747

alignments across multiple rounds. This also includes PT (ST ) which is used to compute the748
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HITS@20
AIDS Mutag FM FR MM MR

N
od

e{Multi-layer 0.57 0.672 0.744 0.657 0.68 0.707

Multi-round 0.672 0.732 0.797 0.737 0.702 0.755

E
dg

e{Multi-layer 0.626 0.671 0.775 0.67 0.743 0.776

Multi-round 0.705 0.749 0.813 0.769 0.809 0.803

Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

N
od

e{Multi-layer 0.956 0.954 1.0 0.978 0.98 1.0

Multi-round 0.993 0.971 1.0 0.993 0.993 0.993

E
dg

e{Multi-layer 0.984 0.976 0.991 0.987 0.987 0.993

Multi-round 1.0 0.983 0.991 1.0 1.0 1.0

Precision@20
AIDS Mutag FM FR MM MR

N
od

e{Multi-layer 0.873 0.897 0.935 0.917 0.93 0.931

Multi-round 0.932 0.943 0.957 0.961 0.949 0.963

E
dg

e{Multi-layer 0.905 0.883 0.958 0.93 0.953 0.976

Multi-round 0.946 0.931 0.973 0.963 0.98 0.987

Table 13: Multi-round vs. multi-layer refinement. First and the last two rows of each table report HITS@20,
MRR and Precision@20 for EINSMATCH (Node) and EINSMATCH (Edge) respectively. Rows colored green
and yellow indicate the best and second best methods respectively.

relevance distance in Eq. 13 (Eq. 20). We wish to compare the predicted alignments with ground749

truth alignments. We expect our final alignment matrix Pt (St) to be one of them. We determine the750

closest ground truth matrices P ∗ and S∗ by computing maxP Tr(P⊤
T P ) and maxS Tr(S⊤

T S) for751

EINSMATCH (Node) and EINSMATCH (Edge) respectively. We now use the closest ground-truth752

alignment P ∗, to compute Tr(P⊤
t P ∗) for t ∈ [T ]. For each t, we plot a histogram with bin width753

0.1 that denotes the density estimate p(Tr(P⊤
t P ∗)). The same procedure is adopted for edges, with754

S∗ used instead of P ∗. The histograms are depicted in Figure 14. We observe that the plots shift755

rightward with increasing t. The frequency of graph pairs with misaligned Pt (St) decreases with756

rounds t while that with well-aligned Pt (St) increases.757

Here, we also study alignments obtained through multi-layer refinement. We adopt the same procedure758

as in Section G.3. One key difference is that the node/edge alignments are computed after every layer759

k and are accumulated across layers k ∈ [K]. In Figure 14, we observe that the plots, in general, shift760

rightward with increasing k. The frequency of graph pairs with misaligned Pt (St) decreases with761

rounds k while that with well-aligned Pk (Sk) increases.762

G.4 Comparison across alternatives of multi-layer EINSMATCH (Node) and multi-round763

EINSMATCH (Node)764

In Table 15, we compare different alternatives to the multi-round and multi-layer variants of EINS-765

MATCH (Node). In particular, we consider four alternatives - Node partner (equation shown in766

Section 4), Node partner (with additional MLP) [Appendix E.4], Node pair partner (msg only) [Ap-767

pendix E.5] and EINSMATCH (Node). We observe that for all metrics, EINSMATCH (Node) and Node768

pair partner (msg only) dominate the other alternatives in most cases. This highlights the importance769

of node pair partner interaction for determining the subgraph isomorphism relationship between two770

graphs. For the multi-round variant, EINSMATCH (Node) outperforms Node pair partner (msg only)771

in four of the datasets and is comparable / slightly worse in the other two. Once again, comparisons772

based on MRR break down because it does not cause a strong differentiation between the approaches.773

774

23



0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> t
P
∗ )

)
→

AIDS

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> k
P
∗ )

)
→

AIDS

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> t
S
∗ )

)
→

AIDS

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> k
S
∗ )

)
→

AIDS

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> t
P
∗ )

)
→

MUTAG

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> k
P
∗ )

)
→

MUTAG

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
S
> t
S
∗ )

)
→

MUTAG

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
S
> k
S
∗ )

)
→

MUTAG

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> t
P
∗ )

)
→

PTC-FM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> k
P
∗ )

)
→

PTC-FM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40

p
(T

r(
S
> t
S
∗ )

)
→

PTC-FM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40

p
(T

r(
S
> k
S
∗ )

)
→

PTC-FM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> t
P
∗ )

)
→

PTC-FR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> k
P
∗ )

)
→

PTC-FR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28

p
(T

r(
S
> t
S
∗ )

)
→

PTC-FR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04
0.08
0.12
0.16
0.20
0.24
0.28

p
(T

r(
S
> k
S
∗ )

)
→

PTC-FR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> t
P
∗ )

)
→

PTC-MM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

p
(T

r(
P
> k
P
∗ )

)
→

PTC-MM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

0.16

0.20

0.24

p
(T

r(
S
> t
S
∗ )

)
→

PTC-MM

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

0.16

0.20

0.24

p
(T

r(
S
> k
S
∗ )

)
→

PTC-MM

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(P>t P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> t
P
∗ )

)
→

PTC-MR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(P>k P
∗)→

0.04

0.08

0.12

0.16

0.20

p
(T

r(
P
> k
P
∗ )

)
→

PTC-MR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

0 5 10

Tr(S>t S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> t
S
∗ )

)
→

PTC-MR

Multi-Round

t = 1
t = 2
t = 3

0 5 10

Tr(S>k S
∗)→

0.04

0.08

0.12

p
(T

r(
S
> k
S
∗ )

)
→

PTC-MR

Multi-Layer

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 14: Similar to Figure 5, we plot empirical probability density of p(Tr(P⊤
t P ∗)) and

p(Tr(S⊤
t S∗)) for different values of t lazy multi round updates and p(Tr(P⊤

k P ∗)) and p(Tr(S⊤
k S∗))

for different values of k for eager multi layer updates. The first (last) two plots in the left (right) of
each row are for multi-round EINSMATCH (Node) (multi-round EINSMATCH (Edge)).

G.5 Comparison of GMN with EINSMATCH alternative for multi-layer and multi-round775

In Table 16, we modify the GMN architecture to include node pair partner interaction in the message-776

passing layer. Based on the reported metrics, we observe that there is no substantial improvement777

upon including information from node pairs in GMN, which is driven by a non-injective mapping778

(attention). This indicates that injectivity of the doubly stochastic matrix in our formulation is crucial779

towards the boost in performance obtained from node pair partner interaction as well.780
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Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.692 0.782 0.822 0.776 0.777 0.803

Node pair partner (msg only) 0.765 0.792 0.876 0.823 0.843 0.848

Node partner 0.668 0.783 0.821 0.752 0.753 0.794

EINSMATCH (Node) 0.756 0.81 0.859 0.802 0.827 0.841

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.815 0.844 0.868 0.852 0.818 0.858

Node pair partner (msg only) 0.818 0.833 0.897 0.831 0.852 0.871

Node partner 0.776 0.829 0.851 0.819 0.844 0.84

EINSMATCH (Node) 0.825 0.851 0.888 0.855 0.838 0.874

HITS@20
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.479 0.634 0.677 0.611 0.608 0.64

Node pair partner (msg only) 0.577 0.651 0.775 0.682 0.719 0.703

Node partner 0.433 0.639 0.678 0.58 0.571 0.624

EINSMATCH (Node) 0.57 0.672 0.744 0.657 0.68 0.707

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.658 0.727 0.756 0.738 0.667 0.743

Node pair partner (msg only) 0.671 0.717 0.807 0.696 0.728 0.753

Node partner 0.603 0.702 0.736 0.686 0.721 0.695

EINSMATCH (Node) 0.672 0.732 0.797 0.737 0.702 0.755

Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.909 0.941 0.965 0.964 0.966 0.984

Node pair partner (msg only) 0.97 0.956 0.964 0.993 0.978 1.0

Node partner 0.917 0.945 0.964 0.987 0.958 0.969

EINSMATCH (Node) 0.956 0.954 1.0 0.978 0.98 1.0

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.987 0.944 0.993 0.987 0.963 0.983

Node pair partner (msg only) 0.984 0.958 0.993 0.98 0.984 0.984

Node partner 0.984 0.949 0.993 0.978 0.978 0.97

EINSMATCH (Node) 0.993 0.971 1.0 0.993 0.993 0.993

Precision@20
AIDS Mutag FM FR MM MR

M
ul

ti-
L

ay
er


Node partner (with additional MLP) 0.817 0.867 0.913 0.913 0.883 0.914

Node pair partner (msg only) 0.871 0.886 0.957 0.937 0.927 0.937

Node partner 0.799 0.866 0.919 0.877 0.873 0.885

EINSMATCH (Node) 0.873 0.897 0.935 0.917 0.93 0.931

M
ul

ti-
R

ou
nd


Node partner (with additional MLP) 0.921 0.917 0.936 0.951 0.921 0.945

Node pair partner (msg only) 0.923 0.913 0.969 0.951 0.957 0.957

Node partner 0.875 0.921 0.933 0.942 0.939 0.941

EINSMATCH (Node) 0.932 0.943 0.957 0.961 0.949 0.963
Table 15: Effect of node pair partner interaction in EINSMATCH (Node). Table shows the comparison of
EINSMATCH (Node) with three different alternatives. The first table reports MAP values, second reports
HITS@20, third reports MRR and fourth reports Precision@20. In each table, the first two rows report metrics
for multi-layer refinement and the second two rows report metrics for multi-round refinement. Rows colored
green and yellow indicate the best and second best methods in their respective sections.
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Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.622 0.71 0.73 0.662 0.655 0.708

Node pair partner 0.579 0.732 0.74 0.677 0.641 0.713

Multi-Round
{

GMN 0.629 0.699 0.757 0.697 0.653 0.714

Node pair partner 0.579 0.693 0.729 0.69 0.665 0.705

HITS@20
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.397 0.544 0.537 0.45 0.423 0.49

Node pair partner 0.346 0.567 0.551 0.476 0.411 0.5

Multi-Round
{

GMN 0.403 0.533 0.562 0.494 0.431 0.502

Node pair partner 0.344 0.528 0.54 0.502 0.462 0.506

Mean Reciprocal Rank (MRR)
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.877 0.923 0.949 0.947 0.928 0.922

Node pair partner 0.827 0.897 0.958 0.877 0.918 0.92

Multi-Round
{

GMN 0.905 0.862 0.958 0.956 0.906 0.921

Node pair partner 0.811 0.901 0.907 0.908 0.964 0.92

Precision@20
AIDS Mutag FM FR MM MR

Multi-Layer
{

GMN 0.751 0.82 0.852 0.809 0.783 0.832

Node pair partner 0.7 0.833 0.861 0.797 0.792 0.846

Multi-Round
{

GMN 0.753 0.795 0.885 0.829 0.792 0.842

Node pair partner 0.694 0.794 0.847 0.835 0.802 0.825
Table 16: Effect of node pair partner interaction in GMN. The tables compare GMN with its EINSMATCH
alternative. The first table reports MAP values, the second table reports HITS@20 values, the third table reports
MRR values and the fourth table reports Precision@20. In each table, the first two rows report metrics for
multi-layer refinement and the second two rows report metrics for multi-round refinement. Rows colored green
and yellow indicate the best and second best methods according to the respective metrics.

G.6 Variation of EINSMATCH (Node) and EINSMATCH (Edge) with different T and K781

In this section, we analyze the accuracy and inference time trade-off of multi-round lazy and multi-782

layer eager variants of EINSMATCH (Node) and EINSMATCH (Edge). In the following tables, we783

show the MAP and inference time. Additionally, we also analyze the trade-off of GMN and IsoNet784

(Edge). The T,K parameters for different models are so chosen that they can be compared against785

each other while fixing the inference time to be roughly similar. For instance, multi-round lazy EINS-786

MATCH (Node) with T = 5,K = 5 maps to multi-layer eager EINSMATCH (Node) with K = 8,787

allowing for a direct comparison of performance without caring much about different compute. Note788

that in below tables, models are listed in order of increasing inference time (i.e. increasing K or T ).789

In tables 18 and 19, we show variations for multi-round lazy EINSMATCH (Node) for fixed T and790

fixed K respectively. We observe that with fixed T , increasing K from 5 to 10 doesn’t improve the791

model significantly. For fixed K, performance (in terms of MAP) improves notably when increasing792

T from 3 to 5.793

In table 20, we show variations for multi-layer eager EINSMATCH (Node) for varying K. We observe794

that except for a drop at K = 7, the performance of the model improves as we increase K. In fact, at795

K = 8, the performance is surprisingly good, even outperforming the similarly timed T = 5,K = 5796

variant of lazy multi-round EINSMATCH (Node) on both AIDS and Mutag.797
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In tables 21 and 22, we compare variants of multi-round lazy EINSMATCH (Edge) with fixed T and798

fixed K respectively. We observe that when T is fixed and K is increased, the gain is marginal. We799

observe a significant gain When K is fixed and T is increased from 3 to 4.800

In table 23, we study the trade-off for multi-layer eager EINSMATCH (Edge) for varying K. We801

observe that with increasing K, the performance continues to improve and peaks at K = 8. Note that802

even at this K, the performance of multi-layer eager EINSMATCH (Edge) is worse than a similarly803

timed variant (T = 5,K = 5) of multi-round EINSMATCH (Edge).804

In table 24, we show variations for GMN for varying K. We observe marginal gains while increasing805

K. From K = 10 to K = 12, the performance drops.806

In table 25, we show how performance varies for IsoNet (Edge) for varying K. We observe that the807

model does not improve with increasing K.808
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Figure 17: Trade off between MAP and inference time (batch size=128).

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

T = 3,K = 5 0.825 0.851 0.888 0.855 0.838 0.874
T = 3,K = 10 0.774 0.855 0.898 0.811 0.855 0.882

Inference time (in ms)
AIDS Mutag FM FR MM MR

T = 3,K = 5 80.11 80.99 81.01 81.24 80.94 80.25
T = 3,K = 10 99.11 99.31 99.28 99.48 99.37 99.36

Table 18: MAP and inference time trade-off of variants of multi-round lazy EINSMATCH (Node) with fixed T .
Rows colored green indicate the best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

T = 3,K = 5 0.825 0.851 0.888 0.855 0.838 0.874
T = 4,K = 5 0.799 0.833 0.892 0.858 0.867 0.891
T = 5,K = 5 0.845 0.875 0.919 0.883 0.894 0.897

Inference time (in ms)
AIDS Mutag FM FR MM MR

T = 3,K = 5 80.11 80.99 81.01 81.24 80.94 80.25
T = 4,K = 5 101.33 100.99 100.95 100.46 100.59 100.87
T = 5,K = 5 123.18 124.19 123.61 122.79 123.33 122.74

Table 19: MAP and inference time trade-off of variants of multi-round lazy EINSMATCH (Node) with fixed K.
Rows colored green and yellow indicate the best and second best T according to the MAP score.
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Mean Average Precision (MAP)
AIDS Mutag

K = 5 0.756 0.81
K = 6 0.813 0.821
K = 7 0.808 0.842
K = 8 0.883 0.874

Inference time (in ms)
AIDS Mutag

K = 5 79.02 79.15
K = 6 94.99 95.33
K = 7 110.78 111.09
K = 8 126.48 126.6

Table 20: MAP and inference time trade-off of variants of multi-layer eager EINSMATCH (Node) with increasing
K. Rows colored green and yellow indicate the best and second best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag

T = 3,K = 5 0.847 0.858
T = 3,K = 10 0.865 0.871

Inference time (in ms)
AIDS Mutag

T = 3,K = 5 64.39 66.03
T = 3,K = 10 88.59 90.76

Table 21: MAP and inference time trade-off of variants of multi-round lazy EINSMATCH (Edge) with fixed T .
Rows colored green indicate the best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag

T = 3,K = 5 0.847 0.858
T = 4,K = 5 0.881 0.887
T = 5,K = 5 0.886 0.909

Inference time (in ms)
AIDS Mutag

T = 3,K = 5 64.39 66.03
T = 4,K = 5 85.02 87.33
T = 5,K = 5 106.24 109.1

Table 22: MAP and inference time trade-off of variants of multi-round lazy EINSMATCH (Edge) with fixed K.
Rows colored green and yellow indicate the best and second best T according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag

K = 5 0.795 0.805
K = 6 0.828 0.837
K = 7 0.852 0.848
K = 8 0.862 0.851

Inference time (in ms)
AIDS Mutag

K = 5 72.63 73.46
K = 6 86.03 87.77
K = 7 100.26 102.6
K = 8 114.33 115.01

Table 23: MAP and inference time trade-off of variants of multi-layer eager EINSMATCH (Edge) with increasing
K. Rows colored green and yellow indicate the best and second best K according to the MAP score.

Mean Average Precision (MAP)
AIDS Mutag FM FR MM MR

K = 5 0.622 0.710 0.730 0.662 0.655 0.708
K = 8 0.641 0.731 0.745 0.701 0.658 0.711
K = 10 0.679 0.736 0.741 0.712 0.691 0.74
K = 12 0.651 0.728 0.743 0.697 0.687 0.699

Inference time (in ms)
AIDS Mutag FM FR MM MR

K = 5 52.94 53.16 53.23 53.12 53.32 53.34
K = 8 83.97 84.47 84.64 84.38 85.41 84.51
K = 10 104.87 105.21 105.72 105.33 105.66 105.73
K = 12 125.99 126.33 126.53 126.39 126.79 126.59

Table 24: MAP and inference time trade-off of variants of GMN with increasing K. Rows colored green and
yellow indicate the best and second best K according to the MAP score.

AIDS Inference time (in ms)
K = 5 0.69 19.77
K = 6 0.717 20.83
K = 7 0.697 21.96
K = 8 0.709 23.02

Table 25: MAP and inference time trade-off of variants of IsoNet (Edge) with increasing K. Rows colored
green and yellow indicate the best and second best T according to the MAP score.
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NeurIPS Paper Checklist809

1. Claims810

Question: Do the main claims made in the abstract and introduction accurately reflect the811

paper’s contributions and scope?812

Answer: [Yes]813

Justification: Section 1.1 discusses the paper’s contributions.814

Guidelines:815

• The answer NA means that the abstract and introduction do not include the claims816

made in the paper.817

• The abstract and/or introduction should clearly state the claims made, including the818

contributions made in the paper and important assumptions and limitations. A No or819

NA answer to this question will not be perceived well by the reviewers.820

• The claims made should match theoretical and experimental results, and reflect how821

much the results can be expected to generalize to other settings.822

• It is fine to include aspirational goals as motivation as long as it is clear that these goals823

are not attained by the paper.824

2. Limitations825

Question: Does the paper discuss the limitations of the work performed by the authors?826

Answer: [Yes]827

Justification: Appendix A discusses the limitations of our work. Details about computational828

efficiency are included in the main paper as well as in Appendix G.6, expressed explicitly as829

the running time of each approach.830

Guidelines:831

• The answer NA means that the paper has no limitation while the answer No means that832

the paper has limitations, but those are not discussed in the paper.833

• The authors are encouraged to create a separate "Limitations" section in their paper.834

• The paper should point out any strong assumptions and how robust the results are to835

violations of these assumptions (e.g., independence assumptions, noiseless settings,836

model well-specification, asymptotic approximations only holding locally). The authors837

should reflect on how these assumptions might be violated in practice and what the838

implications would be.839

• The authors should reflect on the scope of the claims made, e.g., if the approach was840

only tested on a few datasets or with a few runs. In general, empirical results often841

depend on implicit assumptions, which should be articulated.842

• The authors should reflect on the factors that influence the performance of the approach.843

For example, a facial recognition algorithm may perform poorly when image resolution844

is low or images are taken in low lighting. Or a speech-to-text system might not be845

used reliably to provide closed captions for online lectures because it fails to handle846

technical jargon.847

• The authors should discuss the computational efficiency of the proposed algorithms848

and how they scale with dataset size.849

• If applicable, the authors should discuss possible limitations of their approach to850

address problems of privacy and fairness.851

• While the authors might fear that complete honesty about limitations might be used by852

reviewers as grounds for rejection, a worse outcome might be that reviewers discover853

limitations that aren’t acknowledged in the paper. The authors should use their best854

judgment and recognize that individual actions in favor of transparency play an impor-855

tant role in developing norms that preserve the integrity of the community. Reviewers856

will be specifically instructed to not penalize honesty concerning limitations.857

3. Theory Assumptions and Proofs858

Question: For each theoretical result, does the paper provide the full set of assumptions and859

a complete (and correct) proof?860

Answer: [Yes]861

Justification: The paper includes one theorem, which is noted and proved in Appendix D.5.862

Guidelines:863

• The answer NA means that the paper does not include theoretical results.864

• All the theorems, formulas, and proofs in the paper should be numbered and cross-865

referenced.866
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• All assumptions should be clearly stated or referenced in the statement of any theorems.867

• The proofs can either appear in the main paper or the supplemental material, but if868

they appear in the supplemental material, the authors are encouraged to provide a short869

proof sketch to provide intuition.870

• Inversely, any informal proof provided in the core of the paper should be complemented871

by formal proofs provided in appendix or supplemental material.872

• Theorems and Lemmas that the proof relies upon should be properly referenced.873

4. Experimental Result Reproducibility874

Question: Does the paper fully disclose all the information needed to reproduce the main ex-875

perimental results of the paper to the extent that it affects the main claims and/or conclusions876

of the paper (regardless of whether the code and data are provided or not)?877

Answer: [Yes]878

Justification: The paper introduces new architectures and the designs of each of these are879

discussed in the main paper under Sections 3.2, 3.3 and Appendices D, E. Hyperparameters,880

training procedure, hardware and random seeds for all experiments are noted in Appendix F.881

Guidelines:882

• The answer NA means that the paper does not include experiments.883

• If the paper includes experiments, a No answer to this question will not be perceived884

well by the reviewers: Making the paper reproducible is important, regardless of885

whether the code and data are provided or not.886

• If the contribution is a dataset and/or model, the authors should describe the steps taken887

to make their results reproducible or verifiable.888

• Depending on the contribution, reproducibility can be accomplished in various ways.889

For example, if the contribution is a novel architecture, describing the architecture fully890

might suffice, or if the contribution is a specific model and empirical evaluation, it may891

be necessary to either make it possible for others to replicate the model with the same892

dataset, or provide access to the model. In general. releasing code and data is often893

one good way to accomplish this, but reproducibility can also be provided via detailed894

instructions for how to replicate the results, access to a hosted model (e.g., in the case895

of a large language model), releasing of a model checkpoint, or other means that are896

appropriate to the research performed.897

• While NeurIPS does not require releasing code, the conference does require all submis-898

sions to provide some reasonable avenue for reproducibility, which may depend on the899

nature of the contribution. For example900

(a) If the contribution is primarily a new algorithm, the paper should make it clear how901

to reproduce that algorithm.902

(b) If the contribution is primarily a new model architecture, the paper should describe903

the architecture clearly and fully.904

(c) If the contribution is a new model (e.g., a large language model), then there should905

either be a way to access this model for reproducing the results or a way to reproduce906

the model (e.g., with an open-source dataset or instructions for how to construct907

the dataset).908

(d) We recognize that reproducibility may be tricky in some cases, in which case909

authors are welcome to describe the particular way they provide for reproducibility.910

In the case of closed-source models, it may be that access to the model is limited in911

some way (e.g., to registered users), but it should be possible for other researchers912

to have some path to reproducing or verifying the results.913

5. Open access to data and code914

Question: Does the paper provide open access to the data and code, with sufficient instruc-915

tions to faithfully reproduce the main experimental results, as described in supplemental916

material?917

Answer: [Yes]918

Justification: The anonymized code is made available as a supplementary material with the919

submission.920

Guidelines:921

• The answer NA means that paper does not include experiments requiring code.922

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/923

public/guides/CodeSubmissionPolicy) for more details.924
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• While we encourage the release of code and data, we understand that this might not be925

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not926

including code, unless this is central to the contribution (e.g., for a new open-source927

benchmark).928

• The instructions should contain the exact command and environment needed to run to929

reproduce the results. See the NeurIPS code and data submission guidelines (https:930

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.931

• The authors should provide instructions on data access and preparation, including how932

to access the raw data, preprocessed data, intermediate data, and generated data, etc.933

• The authors should provide scripts to reproduce all experimental results for the new934

proposed method and baselines. If only a subset of experiments are reproducible, they935

should state which ones are omitted from the script and why.936

• At submission time, to preserve anonymity, the authors should release anonymized937

versions (if applicable).938

• Providing as much information as possible in supplemental material (appended to the939

paper) is recommended, but including URLs to data and code is permitted.940

6. Experimental Setting/Details941

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-942

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the943

results?944

Answer: [Yes]945

Justification: Important parameters that are required to understand and appreciate the results946

are noted as and when required. Hyperparameters, training procedure, hardware and random947

seeds for all experiments are noted in Appendix F.948

Guidelines:949

• The answer NA means that the paper does not include experiments.950

• The experimental setting should be presented in the core of the paper to a level of detail951

that is necessary to appreciate the results and make sense of them.952

• The full details can be provided either with the code, in appendix, or as supplemental953

material.954

7. Experiment Statistical Significance955

Question: Does the paper report error bars suitably and correctly defined or other appropriate956

information about the statistical significance of the experiments?957

Answer: [Yes]958

Justification: Appendix G.1 includes standard error for the metrics reported in the paper,959

which includes Mean Average Precision (MAP) and HITS@20, computed across each query960

graph in the test split. The section also reports the method of calculation of the standard961

error.962

Guidelines:963

• The answer NA means that the paper does not include experiments.964

• The authors should answer "Yes" if the results are accompanied by error bars, confi-965

dence intervals, or statistical significance tests, at least for the experiments that support966

the main claims of the paper.967

• The factors of variability that the error bars are capturing should be clearly stated (for968

example, train/test split, initialization, random drawing of some parameter, or overall969

run with given experimental conditions).970

• The method for calculating the error bars should be explained (closed form formula,971

call to a library function, bootstrap, etc.)972

• The assumptions made should be given (e.g., Normally distributed errors).973

• It should be clear whether the error bar is the standard deviation or the standard error974

of the mean.975

• It is OK to report 1-sigma error bars, but one should state it. The authors should976

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis977

of Normality of errors is not verified.978

• For asymmetric distributions, the authors should be careful not to show in tables or979

figures symmetric error bars that would yield results that are out of range (e.g. negative980

error rates).981

• If error bars are reported in tables or plots, The authors should explain in the text how982

they were calculated and reference the corresponding figures or tables in the text.983
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8. Experiments Compute Resources984

Question: For each experiment, does the paper provide sufficient information on the com-985

puter resources (type of compute workers, memory, time of execution) needed to reproduce986

the experiments?987

Answer: [Yes]988

Justification: Types of GPUs and inference time are reported in Appendices F.5 and G.6989

respectively. Other details about the training setting are mentioned point-wise in Appendix F.990

Guidelines:991

• The answer NA means that the paper does not include experiments.992

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,993

or cloud provider, including relevant memory and storage.994

• The paper should provide the amount of compute required for each of the individual995

experimental runs as well as estimate the total compute.996

• The paper should disclose whether the full research project required more compute997

than the experiments reported in the paper (e.g., preliminary or failed experiments that998

didn’t make it into the paper).999

9. Code Of Ethics1000

Question: Does the research conducted in the paper conform, in every respect, with the1001

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1002

Answer: [Yes]1003

Justification: The authors have studied the ethics guidelines and find the work to conform1004

well to them.1005

Guidelines:1006

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1007

• If the authors answer No, they should explain the special circumstances that require a1008

deviation from the Code of Ethics.1009

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1010

eration due to laws or regulations in their jurisdiction).1011

10. Broader Impacts1012

Question: Does the paper discuss both potential positive societal impacts and negative1013

societal impacts of the work performed?1014

Answer: [Yes]1015

Justification: Broader societal impacts (both positive and negative) are discussed in Ap-1016

pendix C.1017

Guidelines:1018

• The answer NA means that there is no societal impact of the work performed.1019

• If the authors answer NA or No, they should explain why their work has no societal1020

impact or why the paper does not address societal impact.1021

• Examples of negative societal impacts include potential malicious or unintended uses1022

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1023
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