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Abstract

In many search applications related to passage retrieval, text entailment, and sub-
graph search, the query and each ‘document’ is a set of elements, with a document
being relevant if it contains the query. These elements are not represented by atomic
IDs, but by embedded representations, thereby extending set containment to soft
set containment. Recent applications address soft set containment by encoding sets
into fixed-size vectors and checking for elementwise vector dominance. This 0/1
property can be relaxed to an asymmetric hinge distance for scoring and ranking
candidate documents. Here we focus on data-sensitive, trainable indices for fast
retrieval of relevant documents. Existing LSH methods are designed for mostly
symmetric or few simple asymmetric distance functions, which are not suitable for
hinge distance. Instead, we transform hinge distance into a proposed dominance
similarity measure, to which we then apply a Fourier transform, thereby expressing
dominance similarity as an expectation of inner products of functions in the fre-
quency domain. Next, we approximate the expectation with an importance-sampled
estimate. The overall consequence is that now we can use a traditional LSH, but in
the frequency domain. To ensure that the LSH uses hash bits efficiently, we learn
hash functions that are sensitive to both corpus and query distributions, mapped to
the frequency domain. Our experiments show that the proposed asymmetric domi-
nance similarity is critical to the targeted applications, and that our LSH, which we
call FOURIERHASHNET, provides a better query time vs. retrieval quality trade-off,
compared to several baselines. Both the Fourier transform and the trainable hash
codes contribute to performance gains.

1 Introduction

Consider a corpus X of sets x (which we call ‘documents’) over some universe of discrete items, and
let q be a query which is also a subset of this universe. We wish to retrieve those x ∈ X which satisfy
q ⊆ x. In most real-world applications, the items in the universe are not just opaque IDs, but are
embedded in a rich feature space, demanding that the definition of “q ⊆ x” be generalized suitably.
We formalize the notion of soft set containment by writing q = {qi} and x = {xi} and the
corresponding sets of item embeddings as {q⃗i} and {x⃗i}. If q, x are sentences, q⃗i, x⃗i may be per-
word contextual embeddings output from a transformer. If q, x are graphs, q⃗i, x⃗i may be contextual
node embeddings, such as those output by a Graph Neural Network (GNN). These set-of-vector
representations of q and x are generally of variable sizes. A suitable set encoding gadget, such as
simple pooling [38, 30] or a trainable Deep Set [56] or Set Transformer [26] network, converts them
to fixed-size vectors given by q = SetEnc({q⃗i}) and x = SetEnc({x⃗i}), with x, q ∈ RK . Several
applications [48, 25, 10, 30] then use the test “q ≤ x” (elementwise vector dominance) as a surrogate
for testing if q ⊆ x.
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To convert the Boolean test for vector dominance, q ≤ x, into a graded score suitable for ranking
(and backpropagation), these applications [48, 25, 10, 30] use a form of (asymmetric) hinge distance

d(q, x) =
∥∥[q − x]+

∥∥
1
=

∑
k max{0, q[k]− x[k]}. (1)

d(q, x) = 0 when q ≤ x holds elementwise, and measures the extent of the constraint violation
otherwise. A search system must retrieve the top-τ documents x with the smallest d(q, x), given
query q. Several example applications that fit into this framework are elaborated in Appendix B. Even
if an application does not fit (1) exactly, our technique may help address other asymmetric distances.

Our goal When corpus X is large, it is impractical to evaluate (1) for each document x. Our
goal is to retrieve these τ documents without explicitly evaluating d(q, x) for all x ∈ X , within
query time that scales slowly with |X|. To achieve this, we design an asymmetric Locality Sensitive
Hashing (ALSH) method tailored for hinge distance (1), which then immediately addresses soft
set-containment based search.

Prior work and their limitations When set elements are represented by atomic IDs, Bloom
filters [34] and maximum inner product search (MIPS) can be used to find the best τ corpus items
that are closest to being supersets [42, 55, 41, 2]. However, these techniques are designed specifically
for items with opaque IDs, rather than contextual embeddings. LSH [7, 49, 17, 19, 1] has been
established as a standard technique for fast approximate near-neighbor search (e.g., FAISS, DPR)
in the space of contextual embeddings. However, they predominantly work for symmetric notions
of relevance, such as Jaccard similarity, dot product, cosine similarity, or Hamming distance, rather
than asymmetric distances like (1). Neyshabur and Srebro [33] propose a LSH suited for asymmetric
relevance (ALSH), but it does not provide a satisfactory solution for (1), as our experiments show.

1.1 Our contributions

Responding to the above motivations, we present FOURIERHASHNET, a new LSH for hinge distance-
based asymmetric distance measures. Specifically, we make the following contributions.

Scalable hinge distance search for soft set containment From several applications, we distil
the strongly-motivated problem of fast top-τ retrieval using hinge distance (1), to capture soft set
containment. To our knowledge, (A)LSH for hinge distance has not been explored till date.

Transformation of hinge distance to enable ALSH design One could leverage its shift-invariant
property to apply a Fourier transform on the negative distance, express it as the dot product similarity
between the corresponding Fourier features and then use Asymmetric LSH (ALSH) [33]. However,
as we show in Section 3.1, using the negative distance leads to singularities of the underlying Fourier
transform at some points. This in turn does not allow us to design an LSH for such measure. We
circumvent this problem by a suitable transformation of hinge distance to a dominance similarity,
whose Fourier transform is absolutely convergent.

Design of Fourier features Next, we propose a novel method of lifting the dense vectors to
frequency domain, such that the dominance similarity in the original space can be expressed as
the cosine similarity between the infinite dimensional Fourier features. However, our dominance
similarity function is not a positive definite kernel. Hence, unlike Rahimi and Recht [37], we cannot
apply Bochner theorem [40] to obtain finite dimensional Fourier features. Instead, we first scale
the Fourier features with a sinc function and then obtain finite dimensional Fourier features via
importance sampling.

Trainable hashcode design The cosine similarity between the sampled Fourier features is the
unbiased estimate of our dominance similarity measure. This allows the use of conventional random
hyperplane LSH. However, such an LSH is not guided by the underlying data distribution. To mitigate
this limitation, we compute the hashcodes by feeding the Fourier features into a trainable neural
hashing network. Prior approaches [50, 15] to trainable hashing encourage bucket balance over
the entire corpus, regardless of the query workload. However, this approach is not optimal if most
corpus items are irrelevant for most queries, as is usually the case. We propose a new loss function
that encourages the best-match hash bucket for a query to include relevant documents and exclude
irrelevant documents.

Experiments We show, through extensive experiments, that FOURIERHASHNET is more effective
than existing LSH schemes, and that both frequency domain representations and the new trainable
hashcode contribute to our gains.
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2 Preliminaries

Notation Throughout, we will use [K] to mean {1, . . . ,K} or {0, . . . ,K − 1} as convenient. We
use q to indicate a query and x to indicate a corpus ‘document’. Their (possibly learnt) representations
are denoted by x, q ∈ RK . For supervision, (q, x) may come with a binary relevance judgment
rel(q, x) ∈ {0, 1}. We have defined a potentially learnable distance d(q, x) — a computable surrogate
for rel(q, x) — above in Eqn. (1). One can define a similarity measure sim(q, x) by applying a
monotonically decreasing function on the distance d(q, x). We define ι =

√
−1 and denote the set of

corpus items as X = {x1, x2, ..., xN}. We indicate the domain of query and corpus items as Q and
X respectively. Given a function s(t), its Fourier transform is the function S : C → C which satisfies
s(t) =

∫∞
−∞ S(ιω)eιωtdω, where ω is the frequency variable and S(ιω) = 1

2π

∫∞
−∞ s(t)e−ιωtdt. For

a vector q or x ∈ RK , the Fourier transform is synthesized using a frequency vector ω ∈ RK of same
dimension as x or q. Here, a function s(x) can be expanded as s(x) =

∫
ω∈RK S(ιω)e−ιω⊤xdω.

2.1 Locality sensitive hashing

Indexing corpus items Given a set of corpus items X = {x1, x2, ..., xN}, an LSH will hash
each item xi a number of L times, which is called the number of trials. For each trial ℓ ∈ [L], it
prepares B buckets, which are indexed as the pair (ℓ, b) with ℓ ∈ [L] and b ∈ [B]. In the context of
LSH, we draw L independent samples of hash functions h(ℓ) from a single hash family H, such that
h(ℓ) : RK → [B]. A corpus item x is inserted in the bucket indexed (ℓ, h(ℓ)(x)), for each ℓ ∈ [L].

Symmetric LSH Given a query q, a symmetric LSH computes bucket indexes (ℓ, h(ℓ)(q)) for all L
using the same hash function h(ℓ) used for indexing the corpus. Only those items x that are in bucket
(ℓ, h(ℓ)(q)) are considered as candidates; overall, the candidates are in the union of these buckets. In
the rest of the paper, we will describe retrieval for one bucket under one trial, with the understanding
that L buckets will contribute candidates. An LSH exists if the query and corpus items are hashed in
the same bucket with high (low) probability as long as their similarities are high (low). Formally, we
define symmetric LSH as follows.

Definition 2.1 (Symmetric Locality Sensitive Hashing (LSH)). Given a domain of queries Q and
corpus X with Q,X ⊂ Z and a similarity measure sim : Z ×Z → R. A distribution over mappings
H : Z → N is said to be a (S0, cS0, p1, p2)-LSH for the similarity function sim if for all q ∈ Q and
x ∈ X we have, with p1 > p2 and c < 1,

• if sim(q, x) ≥ S0, then Prh∼H[h(q) = h(x)] ≥ p1
• if sim(q, x) ≤ cS0, then Prh∼H[h(q) = h(x)] ≤ p2.

The hash family H is tailored to the specific choice of similarity function sim(q, x) (equivalently, the
distance d(q, x)). When q,x ∈ RK and sim(q, x) = cos(q,x), the choice of H corresponds to the
uncountable set of all hyperplanes in K dimensions passing through the origin [9]. When sim(q, x)
is the Jaccard similarity |q ∩ x|/|q ∪ x|, H is the space of minwise independent hash functions [7].

Asymmetric LSH (ALSH) In many applications, like the current setup (1), we have asymmetric
similarity where sim(q, x) ̸= sim(x, q). In such cases, we employ two different hash families G and
H to determine the bucket of query and corpus respectively. Formally, we define ALSH as follows:

Definition 2.2 (Asymmetric Locality Sensitive Hashing (ALSH) [33]). An asymmetric LSH is
(S0, cS0, p1, p2)-ALSH for a similarity function sim(•, •) over Q, X if we have two different
distributions over mappings G and H such that, with p1 > p2 and c < 1,

• if sim(q, x) ≥ S0 then Prg∼G,h∼H[g(q) = h(x)] ≥ p1
• if sim(q, x) ≤ cS0 then Prg∼G,h∼H[g(q) = h(x)] ≤ p2.

As an example, given ∥x∥ ≤ 1, consider sim(q, x) = q⊤x/||q||2, which can be re-written as
cos(α(q), β(x)), where α(q) = [0; q/∥q∥2], β(x) = [

√
1− ∥x∥22;x]. Thus, we can apply random

hyperplane hash on both α(x) and β(x) to construct g(q) = sign(w · α(q)) and h(x) = sign(w ·
β(x)) with w ∼ N (0, I). If ∥x∥ is unbounded, no ALSH exists for sim(q, x) = q⊤x/||q||2 [33].
In (S0, cS0, p1, p2)-ALSH, retrieval of items with similarity score more than S0 out of a database
of items having a similarity score less than cS0 will admit time-complexity O(nρ log n) and space
complexity O(n1+ρ) where ρ = log p1/ log p2 [33].
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WWW

<latexit sha1_base64="2grjtlvgbMNVEIPw4SiTlvcadLg=">AAAB+3icdVDJSgNBEO2JW4xbjEcvjUGIlzAjxuUW9OIxglkgGUJPTydp0tM9dNdIwpBf8eJBEa/+iDf/xs4iRNEHBY/3qqiqF8SCG3DdTyezsrq2vpHdzG1t7+zu5fcLDaMSTVmdKqF0KyCGCS5ZHTgI1oo1I1EgWDMY3kz95gPThit5D+OY+RHpS97jlICVuvlCB9gIUiByMCl1aKjgpJsvumV3BrxEKq53de5hb6EU0QK1bv6jEyqaREwCFcSYtufG4KdEA6eCTXKdxLCY0CHps7alkkTM+Ons9gk+tkqIe0rbkoBn6vJESiJjxlFgOyMCA/Pbm4p/ee0Eepd+ymWcAJN0vqiXCAwKT4PAIdeMghhbQqjm9lZMB0QTCjaunA3h+1P8P2mclr1K2b07K1avF3Fk0SE6QiXkoQtURbeohuqIohF6RM/oxZk4T86r8zZvzTiLmQP0A877F0JRlJQ=</latexit>

tanh(·)

<latexit sha1_base64="2grjtlvgbMNVEIPw4SiTlvcadLg=">AAAB+3icdVDJSgNBEO2JW4xbjEcvjUGIlzAjxuUW9OIxglkgGUJPTydp0tM9dNdIwpBf8eJBEa/+iDf/xs4iRNEHBY/3qqiqF8SCG3DdTyezsrq2vpHdzG1t7+zu5fcLDaMSTVmdKqF0KyCGCS5ZHTgI1oo1I1EgWDMY3kz95gPThit5D+OY+RHpS97jlICVuvlCB9gIUiByMCl1aKjgpJsvumV3BrxEKq53de5hb6EU0QK1bv6jEyqaREwCFcSYtufG4KdEA6eCTXKdxLCY0CHps7alkkTM+Ons9gk+tkqIe0rbkoBn6vJESiJjxlFgOyMCA/Pbm4p/ee0Eepd+ymWcAJN0vqiXCAwKT4PAIdeMghhbQqjm9lZMB0QTCjaunA3h+1P8P2mclr1K2b07K1avF3Fk0SE6QiXkoQtURbeohuqIohF6RM/oxZk4T86r8zZvzTiLmQP0A877F0JRlJQ=</latexit>

tanh(·)

<latexit sha1_base64="QfAKB7Ab0LE6BiHTN2cThw7HGxg=">AAACAXicdVDJSgNBEO2JW4zbqBfBS2MQIkiYEeNyC3rxmIBZIAmhp9NJmvT0DN01YhjHi7/ixYMiXv0Lb/6NnUWIog8KHu9VUVXPCwXX4DifVmpufmFxKb2cWVldW9+wN7eqOogUZRUaiEDVPaKZ4JJVgINg9VAx4nuC1bzB5civ3TCleSCvYRiylk96knc5JWCktr3TBHYLsQi0TnLlw/pdM/S9uJYctO2sk3fGwDOk4LjnJy52p0oWTVFq2x/NTkAjn0mggmjdcJ0QWjFRwKlgSaYZaRYSOiA91jBUEp/pVjz+IMH7RungbqBMScBjdXYiJr7WQ98znT6Bvv7tjcS/vEYE3bNWzGUYAZN0sqgbCQwBHsWBO1wxCmJoCKGKm1sx7RNFKJjQMiaE70/x/6R6lHcLead8nC1eTONIo120h3LIRaeoiK5QCVUQRffoET2jF+vBerJerbdJa8qazmyjH7DevwDLuJcb</latexit>

loss(Q, X|WWW )
<latexit sha1_base64="jIhHqLblDQRbIRL3IBA/YjusiHI=">AAAB+3icdVDLSsNAFJ3UV62vWJduBotQQUoi1seu6MZlBfuANpTJZNIOnUnizERaQn7FjQtF3Poj7vwbp2mEKnrgcg/n3MvcOW7EqFSW9WkUlpZXVteK66WNza3tHXO33JZhLDBp4ZCFousiSRgNSEtRxUg3EgRxl5GOO76e+Z0HIiQNgzs1jYjD0TCgPsVIaWlglr1qP+Jucp8eZ32SHg3MilWzMsAFUrfsyzMb2rlSATmaA/Oj74U45iRQmCEpe7YVKSdBQlHMSFrqx5JECI/RkPQ0DRAn0kmy21N4qBUP+qHQFSiYqYsbCeJSTrmrJzlSI/nbm4l/eb1Y+RdOQoMoViTA84f8mEEVwlkQ0KOCYMWmmiAsqL4V4hESCCsdV0mH8P1T+D9pn9Tses26Pa00rvI4imAfHIAqsME5aIAb0AQtgMEEPIJn8GKkxpPxarzNRwtGvrMHfsB4/wL7bpRp</latexit>

d(qqq,xxx)
<latexit sha1_base64="PWJSC1VirkvbqZaa66kEl1r2JC8=">AAAB+nicdVDLSsNAFJ34rPWV6tLNYBFclUSsj13RjcsK9gFNKJPJpB06MwkzE0uJ+RQ3LhRx65e482+cthGq6IELh3Pu5d57goRRpR3n01paXlldWy9tlDe3tnd27cpeW8WpxKSFYxbLboAUYVSQlqaakW4iCeIBI51gdD31O/dEKhqLOz1JiM/RQNCIYqSN1Lcr3piGZIh05iU8yDp53rerTs2ZAS6QuuNenrnQLZQqKNDs2x9eGOOUE6ExQ0r1XCfRfoakppiRvOyliiQIj9CA9AwViBPlZ7PTc3hklBBGsTQlNJypixMZ4kpNeGA6OdJD9dubin95vVRHF35GRZJqIvB8UZQyqGM4zQGGVBKs2cQQhCU1t0I8RBJhbdIqmxC+P4X/k/ZJza3XnNvTauOqiKMEDsAhOAYuOAcNcAOaoAUwGINH8AxerAfryXq13uatS1Yxsw9+wHr/AiMclJM=</latexit>

cWWW
<latexit sha1_base64="i0/HFiOOq3xBCinMjyhwlIUZ6Hc=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjJqte6KblxWsA9oh5JJM21sJhmTjFCG/oMbF4q49X/c+Tem0xFU9MCFwzn3cu89QcyZNgh9OIWFxaXlleJqaW19Y3OrvL3T0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7GlzO/fU+VZlLcmElM/QgPBQsZwcZKrV48Yv27frmC3Cryzk8RRC7KkJGad+xBL1cqIEejX37vDSRJIioM4Vjrrodi46dYGUY4nZZ6iaYxJmM8pF1LBY6o9tPs2ik8sMoAhlLZEgZm6veJFEdaT6LAdkbYjPRvbyb+5XUTE9b8lIk4MVSQ+aIw4dBIOHsdDpiixPCJJZgoZm+FZIQVJsYGVLIhfH0K/yetI9eruuj6pFK/yOMogj2wDw6BB85AHVyBBmgCAm7BA3gCz450Hp0X53XeWnDymV3wA87bJ88Rj0k=</latexit>

�q

<latexit sha1_base64="N/B/lzFtYg8n6561+c3htPwwCig=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FLx4r2A9ol5JNs21sNglJVixL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXKc6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqaa0AaRXOp2hA3lTNCGZZbTttIUJxGnrWh0M/Vbj1QbJsW9HSsaJnggWMwItk5qdtWQ9Z565Ypf9WdAyyTISQVy1Hvlr25fkjShwhKOjekEvrJhhrVlhNNJqZsaqjAZ4QHtOCpwQk2Yza6doBOn9FEstSth0Uz9PZHhxJhxErnOBNuhWfSm4n9eJ7XxVZgxoVJLBZkvilOOrETT11GfaUosHzuCiWbuVkSGWGNiXUAlF0Kw+PIyaZ5Vg4uqf3deqV3ncRThCI7hFAK4hBrcQh0aQOABnuEV3jzpvXjv3se8teDlM4fwB97nD6g0jy4=</latexit>

�x

<latexit sha1_base64="iiiFS5TwZO8ZuR5tgddq94sGi9E=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPbUDbbSbt0swm7G6WE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ66D7xPg6pySa9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2cUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU145WdcJqlByeaLwlQQE5Pp+6TPFTIjxpZQpri9lbAhVZQZG1LJhuAtvrxMmmdV76Lq3p1Xatd5HEU4gmM4BQ8uoQa3UIcGMJDwDK/w5mjnxXl3PuatBSefOYQ/cD5/APiSkRw=</latexit>b
<latexit sha1_base64="WfPftZjv1QiLBT7127SGIoGiMh4=">AAAB8XicdVBNSwMxEJ2tX7V+VT16CRbB05JVq/VW9OKxgv3AdinZNG1Ds9klySpl6b/w4kERr/4bb/4b020FFX0w8Hhvhpl5QSy4Nhh/OLmFxaXllfxqYW19Y3OruL3T0FGiKKvTSESqFRDNBJesbrgRrBUrRsJAsGYwupz6zTumNI/kjRnHzA/JQPI+p8RY6bZzz3tsSEw66RZL2C1j7/wUI+ziDBmpeMce8uZKCeaodYvvnV5Ek5BJQwXRuu3h2PgpUYZTwSaFTqJZTOiIDFjbUklCpv00u3iCDqzSQ/1I2ZIGZer3iZSEWo/DwHaGxAz1b28q/uW1E9Ov+CmXcWKYpLNF/UQgE6Hp+6jHFaNGjC0hVHF7K6JDogg1NqSCDeHrU/Q/aRy5XtnF1yel6sU8jjzswT4cggdnUIUrqEEdKEh4gCd4drTz6Lw4r7PWnDOf2YUfcN4+ASoakT4=</latexit>b

(a) Fourier transform (b) Data driven hashcode training

<latexit sha1_base64="i0/HFiOOq3xBCinMjyhwlIUZ6Hc=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GjJqte6KblxWsA9oh5JJM21sJhmTjFCG/oMbF4q49X/c+Tem0xFU9MCFwzn3cu89QcyZNgh9OIWFxaXlleJqaW19Y3OrvL3T0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7GlzO/fU+VZlLcmElM/QgPBQsZwcZKrV48Yv27frmC3Cryzk8RRC7KkJGad+xBL1cqIEejX37vDSRJIioM4Vjrrodi46dYGUY4nZZ6iaYxJmM8pF1LBY6o9tPs2ik8sMoAhlLZEgZm6veJFEdaT6LAdkbYjPRvbyb+5XUTE9b8lIk4MVSQ+aIw4dBIOHsdDpiixPCJJZgoZm+FZIQVJsYGVLIhfH0K/yetI9eruuj6pFK/yOMogj2wDw6BB85AHVyBBmgCAm7BA3gCz450Hp0X53XeWnDymV3wA87bJ88Rj0k=</latexit>

�q

<latexit sha1_base64="N/B/lzFtYg8n6561+c3htPwwCig=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FLx4r2A9ol5JNs21sNglJVixL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXKc6M9f1vr7Cyura+UdwsbW3v7O6V9w+aRqaa0AaRXOp2hA3lTNCGZZbTttIUJxGnrWh0M/Vbj1QbJsW9HSsaJnggWMwItk5qdtWQ9Z565Ypf9WdAyyTISQVy1Hvlr25fkjShwhKOjekEvrJhhrVlhNNJqZsaqjAZ4QHtOCpwQk2Yza6doBOn9FEstSth0Uz9PZHhxJhxErnOBNuhWfSm4n9eJ7XxVZgxoVJLBZkvilOOrETT11GfaUosHzuCiWbuVkSGWGNiXUAlF0Kw+PIyaZ5Vg4uqf3deqV3ncRThCI7hFAK4hBrcQh0aQOABnuEV3jzpvXjv3se8teDlM4fwB97nD6g0jy4=</latexit>

�x

<latexit sha1_base64="Kz+ciCKZY1yWgvy8qvxjBdGm/KA=">AAAB8XicdVDLSgNBEJyNrxhfUY9eBoPgaZkNWU1uQS8eI5gHJiHMTibJkNnZZaZXDEv+wosHRbz6N978GycPQUULGoqqbrq7glgKA4R8OJmV1bX1jexmbmt7Z3cvv3/QMFGiGa+zSEa6FVDDpVC8DgIkb8Wa0zCQvBmML2d+845rIyJ1A5OYd0M6VGIgGAUr3XaA30PKIjPt5QvEJcWyXypi4hZ9UvEqlvjEq5yVsOeSOQpoiVov/97pRywJuQImqTFtj8TQTakGwSSf5jqJ4TFlYzrkbUsVDbnppvOLp/jEKn08iLQtBXiufp9IaWjMJAxsZ0hhZH57M/Evr53AoNxNhYoT4IotFg0SiSHCs/dxX2jOQE4soUwLeytmI6opAxtSzobw9Sn+nzSKrue75LpUqF4s48iiI3SMTpGHzlEVXaEaqiOGFHpAT+jZMc6j8+K8LlozznLmEP2A8/YJl++RiA==</latexit>cos

<latexit sha1_base64="ps+aRDd+j/RcD4OuA2M1R6aJT5U=">AAAB8HicbVBNSwMxEJ34WetX1aOXYBE8lV1R9Fj04rGC/ZB2Kdk024Ym2SXJinXpr/DiQRGv/hxv/hvTdg/a+mDg8d4MM/PCRHBjPe8bLS2vrK6tFzaKm1vbO7ulvf2GiVNNWZ3GItatkBgmuGJ1y61grUQzIkPBmuHweuI3H5g2PFZ3dpSwQJK+4hGnxDrpvpPIMHsadx+7pbJX8abAi8TPSRly1Lqlr04vpqlkylJBjGn7XmKDjGjLqWDjYic1LCF0SPqs7agikpkgmx48xsdO6eEo1q6UxVP190RGpDEjGbpOSezAzHsT8T+vndroMsi4SlLLFJ0tilKBbYwn3+Me14xaMXKEUM3drZgOiCbUuoyKLgR//uVF0jit+OcV7/asXL3K4yjAIRzBCfhwAVW4gRrUgYKEZ3iFN6TRC3pHH7PWJZTPHMAfoM8fTheQvA==</latexit>zzzx

<latexit sha1_base64="o8oPW7W5pP2LDeZTsBeaLexuXpg=">AAACBHicdVDLSgNBEJz1bXxFPXoZDEIEWWZDouYmevGoYBIhCWF20tHB2YczvWJY9uDFX/HiQRGvfoQ3/8bJQ1DRgqaLqm5muvxYSYOMfTgTk1PTM7Nz87mFxaXllfzqWt1EiRZQE5GK9LnPDSgZQg0lKjiPNfDAV9Dwr44GfuMGtJFReIb9GNoBvwhlTwqOVurkN1oIt5hqUFmxFQd+ep3tDPtttt3JF5jLSvuVcokyt1RhVa9qSYV51d0y9Vw2RIGMcdLJv7e6kUgCCFEobkzTYzG2U65RCgVZrpUYiLm44hfQtDTkAZh2Ojwio1tW6dJepG2FSIfq942UB8b0A99OBhwvzW9vIP7lNRPs7bdTGcYJQihGD/USRTGig0RoV2oQqPqWcKGl/SsVl1xzgTa3nA3h61L6P6mXXK/istNy4eBwHMcc2SCbpEg8skcOyDE5ITUiyB15IE/k2bl3Hp0X53U0OuGMd9bJDzhvn+3fmO0=</latexit>

rel(qqq,xxx)

Figure 1: Outline of FOURIERHASHNET. (a) Given the input query embedding q and corpus
embedding x, we apply the asymmetric transformation in Eq. (10) to obtain corresponding Fourier
features Fq(ιω

1..M ) and Fx(ιω
1..M ). (b) We use the generated Fourier features as inputs, to train

asymmetric Fourier transformation networks ϕq and ϕx using Eq. (11). This generates transformed
Fourier representations zq = ϕq(Fq(ιω

1..M )) and zx = ϕx(Fx(ιω
1..M )), which are in turn used to

train the random hyperplanes W using Eq. (13). The trained ϕ̂q, ϕ̂x and Ŵ thus obtained are used to
generate final hashcodesg(q) = sign(Ŵ ϕ̂q(Fq(ιω

1..M ))), h(x) = sign(Ŵ ϕ̂x(Fx(ιω
1..M ))).

2.2 Problem statement
Given the set of training queries Q and corpus X , with supervised relevance scores rel(q, x) ∈ {0, 1}
and the surrogate score d(q, x) defined in Eq. (1), we aim to design an LSH of the distance d(q, x)
which can efficiently retrieve top-τ corpus items for any new query q′.
Why are existing methods not suitable? As we discussed in Section 2.1, relevance metrics for
popular LSHs are mostly symmetric, e.g., cosine, dot-product, and Jaccard similarity. In particular,
Jaccard similarity, although commonly used in set-related applications, is not suitable for our problem,
where we define rel(q, x) = 1 when q ⊆ x and 0 otherwise — it is possible that there exists a higher
overlap between q and x when q ̸⊆ x, and a lower overlap when q ⊆ x. E.g., suppose q = {a, b},
x1 = {a, b, c, d, e}, and x2 = {b}. Here, rel(q, x1) = 1 and rel(q, x2) = 0. However, the Jaccard
similarity J(q, x) is not able to reflect the order of rel(q, x) since J(q, x1) = 2/5 < J(q, x2) = 1/2.
As discovered by Charikar [9, Lemma 1], the similarity functions in symmetric LSH are inversely
related to a metric, which must satisfy symmetry and triangle inequality. Although a query normalized
dot product similarity appears asymmetric, it can be expressed using cosine similarity. This readily
allows us to use a random hyperplane based (asymmetric) LSH. In contrast, it is not immediately
apparent how to find such a connection for our asymmetric hinge distance (1).

3 FOURIERHASHNET: A new ALSH for hinge distance search
Overview of our approach We design an ALSH for d(q, x) in three steps. In the first step, we
construct a suitable dominance similarity function sim(q, x) from d(q, x) in such a way that there
exists a probability distribution p : RK → [0, 1] and bounded Fourier representations Fq(ιω) and
Fx(ιω) of both query q and corpus items x such that

sim(q, x) =

∫

ω∈RK

Fq(ιω)⊤Fx(ιω)p(ω)dω = Eω∼p(•)[Fq(ιω)⊤Fx(ιω)] (2)

In the second step, we approximate the expected value of the Fq(ιω)⊤Fx(ιω) using a finite sample
of Fourier features. This allows us to apply random hyperplane LSH , similar to asymmetric dot
product LSH. However, these hyperplanes are drawn from an isotropic Gaussian distribution in a
data-oblivious manner, which results in suboptimal bucket distribution in terms of accuracy-efficiency
trade off. To tackle this issue, in the third step, we train the random hyperplanes W which takes the
Fourier features as input and give (soft) binary hashcodes, which are optimized to effectively trade
off between accuracy and efficiency. Next, we provide the details of the above three steps.

3.1 Design of dominance similarity function sim(q, x) from hinge distance
Limitations of simple choices of dominance similarity function sim(q, x) A dominance similarity
function sim(q, x) is inversely related to the hinge distance d(q, x). Chierichetti and Kumar [11]
characterized that, any function of a similarity measure is LSHable, if and only if this function is
a probability generating function. However, this characterization applies only to symmetric LSH
and no such guiding principle is available for an ALSH. In this context, one can experiment with
simple designs of sim that are inversely related to d. An immediate choice is sim(q, x) = −d(q, x).
However, if we allow q and x to be any vector from RK , then sim(q, x) is not bounded. Finding
ALSH for unbounded similarity measures is extremely difficult if not impossible. For example, no
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ALSH exists even for dot product similarity in two or more dimensions [33]. Moreover, suppose we
express sim(q, x) using the Fourier expansion

sim(q, x) =
∑

k∈[K]

∫ ∞

−∞
S(ιωk)e

ιωk(q[k]−x[k])dωk. (3)

Then, S(ιω), i.e., the Fourier transform of the function s(t) = −[t]+ used in each dimension, has
a singularity at ω = 0. In particular, we have S(ιω) = −ιδ′(ω)/2 + 1/2πω2. Here, δ′(ω) is the
derivative of Dirac delta functional. Thus, S(ιω) becomes unbounded as ω → 0. These issues
eventually prevent us from designing bounded Fourier features Fq(ιω) and Fx(ιω) for Eq. (2).
sim(q, x) with bounded Fourier transform The key reason for which S(ιω) becomes unbounded
as ω → 0 is that the function s(t) = −[t]+ is unbounded at t → ∞. However, in practice, the
embeddings are bounded and we have a bounded difference |q[k]− x[k]| ≤ T . Thus, it is reasonable
to ignore the effect of [q[k]− x[k]]+ when |q[k]− x[k]| > T . To this end, we compute sim(q, x) as

sim(q, x) =
∑

k∈[K]

s(q[k]− x[k]), where s(t) =





T − t if 0 ≤ t ≤ T,

T if − T ≤ t < 0,

0 otherwise.
(4)

In practice, we choose T as a hyperparameter greater than maxk |q[k]− x[k]|. Upon restricting the
computation within this domain, one can immediately show that sim(q, x) = KT − d(q, x).

3.2 Computation of finite dimensional Fourier features for dominance similarity sim(q, x)

Fourier transform of s(t) We next compute the Fourier representation S(ιω) of s : R → R (4).

Proposition 3.1. (Proven in Appendix D) s(t) specified in Eq. (4) has Fourier transform

S(ιω) =
T sin(ωT )

2πω
+

sin2(ωT
2 )

πω2︸ ︷︷ ︸
Re(S(ιω))

+ι

[
sin(ωT )

2πω2
− T cos(ωT )

2πω

]

︸ ︷︷ ︸
Im(S(ιω))

(5)

While the Fourier transform of −[t]+ is unbounded as ω→0, here, S(ιω) is bounded everywhere.
Computation and sampling of Fourier features Once we compute S(ιω) using Eq. (5), we use
Eq. (3) to compute sim(q, x) as follows:

sim(q, x) =
∑

k∈[K]

∫ ∞

−∞
[Re(S(ιωk)) + ιIm(S(ιωk))]e

ιωk(q[k]−x[k])dωk (6)

Now, we define Sq(ιω) and Sx(ιω), the query and corpus specific Fourier representations:

Sq(ιωk)=
[
uk

√
|Re(S(ιωk))|

[
cos(ωkq[k]), sin(ωkq[k])

]
,

vk
√

|Im(S(ιωk))|
[
− sin(ωkq[k]), cos(ωkq[k])

]]

Sx(ιωk)=
[√

|Re(S(ιωk))|
[
cos(ωkx[k]), sin(ωkx[k])

]
,

√
|Im(S(ιωk))|

[
cos(ωkx[k]), sin(ωkx[k])

]]
(7)

Here, uk = sign(Re(S(ιωk))), vk = sign(Im(S(ιωk))). They ensure that the dot-product
Sq(ιωk)

⊤Sx(ιωk) equals to the real part of the integrand in the RHS of Eq. (6). Since the dominance
similarity sim(q, x) is a real quantity, the imaginary part of the RHS integrates to zero. Therefore,
using the dot product of the vectors Sq(ιωk) and Sx(ιωk), which are purely real, we can express

sim(q, x) =

∫ ∞

−∞

∑

k∈[K]

Sq(ιωk)
⊤Sx(ιωk)dωk =

∫

ω∈RK

Sq(ιω)⊤Sx(ιω)dω (8)

Here, S•(ιω) = [S•(ιω1), ..,S•(ιωK)], ω = [ω1, .., ωK ]. Note that, the expression of Sq(ιωk) is
different from Sx(ιωk) in Eq. (7). This maintains the asymmetry in the final dot product in Eq. (8).
Inspired by the seminal work of Rahimi and Recht [37], several works [46, 35] have exploited Fourier
transformations to approximate various functions using inner product between the feature maps.
However, the functions that Rahimi and Recht [37] considered are shift invariant positive definite
kernels. This allowed them to leverage Bochner’s theorem [40] which establishes that the Fourier
transformation of these kernels are probability distributions. However, in Eq. (8), there is no such
readily available probability distribution. In response, we attempt to find out a probability distribution
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p(ω) which allows us to draw samples using an importance sampling like procedure, as follows:

sim(q, x) = Eω∼p(ω)

[
Fq(ιω)⊤Fx(ιω)

]
, where, Fq(ιω) =

Sq(ιω)√
p(ω)

,Fx(ιω) =
Sx(ιω)√

p(ω)
, (9)

Let {ωj}Mj=1 ∼ p(ω) be M i.i.d random samples. We compute the Monte Carlo estimate as follows:

sim(q, x) ≈ 1

M

∑

j∈[M ]

Fq(ιω
j)⊤Fx(ιω

j) ∝ cos(Fq(ιω
1..M ),Fx(ιω

1..M )) (10)

Here, F•(ιω
1..M ) = [F•(ιω

1), ..,F•(ιω
M )]. Note that, as suggested by Eqs. (7) and (9),

||Fq(ιω
1...M )||2 = ||Fx(ιω

1..M )||2 =
∑M

j=1

∑K
k=1

|Re(S(ιωj
k))|+|Im(S(ιωj

k))|
p(ωj

k)
. Thus, the value is in-

dependent of the query or corpus, which leads to the proportionality relation. We choose the probabil-
ity distribution p(ω) guided the proportionality constant ||F•(ιω

1..M )|| and set p(ω) =
∏

k∈[K] p(ω),
where p(ω) ∝ |Re(S(ιω))|+ |Im(S(ιω))|. However, the integral of these terms may not be bounded.
Therefore, we set the support of p(ω) between [−ωmax, ωmax], thus eliminating the higher frequency
terms. The effect on the overall score is small.

3.3 Trainable hashing network
Random hyperplane LSH Eq. (10) provides an asymmetric transformation on the input query-
corpus pair, which maps it into the cosine similarity space, thus allowing for Random Hyperplanes
hashing. We sample H spherically symmetrically distributed normal vectors {wi}Hi=1, i.e., wi ∼
N (0, I), each perpendicular to a random hyperplane passing though the origin. For each query q and
the corpus x, we can generate H-bit hashcodes g(q), h(x) ∈ {±1}H from the Fourier features (10)
as follows: g(q)[i] = sign(w⊤

i Fq(ιω
1...M )) and h(x)[i] = sign(w⊤

i Fx(ιω
1...M )). Consequently,

we can index the given corpus with N items, into a hash table with 2H buckets. For each query q, we
restrict our search within bucket b = g(q). If the corpus items are uniformly distributed across all
buckets, then it enables sub-quadratic time retrieval with N/2H comparisons (per trial).
Data driven hashcode generation The above random hyperplane LSH approach suffers from two
distinct limitations: (1) the quality of Monte Carlo approximation obtained in Eq. (10), depends
on the suitability of p(ω), and (2) the hyperplanes are data oblivious. Data oblivious hyperplanes
provide the best efficiency if the corpus embeddings are uniformly spread over the K dimensional
sphere, which allows the random hyperplanes to evenly allocate the corpus items across different
hashcodes. However, in practice, the spatial distribution of the embeddings is not uniform. This
results in a skewed distribution of the corpus items across the hash buckets.
To tackle the first problem, we improve the quality of the Fourier features through a trainable
nonlinear transformation. Here, we use two networks ϕq and ϕx which takes the Fourier features
for the query and corpus, i.e., Fq(ιω

1..M ) and Fx(ιω
1..M ) as input and outputs corresponding

transformed Fourier representations zq = ϕq(Fq(ιω
1..M )) and zx = ϕx(Fx(ιω

1..M )). We train ϕq

and ϕx by minimizing a BCE loss on {cos(zq, zx), rel(q, x)} pairs for q ∈ Q and x ∈ X as follows:

min
ϕq,ϕx

∑
q∈Q,x∈X −

[
rel(q, x) log(1 + cos(zq, zx)) + (1− rel(q, x) log(1− cos(zq, zx))

]
(11)

Algorithm 1 FOURIERHASHNET

1: function Train(X ,Q, {rel(q, x)}q∈Q,x∈X )
2: Draw ω1...M ∼ p(ω)
3: Compute Fq(ιω

1..M ),Fx(ιω
1..M ) (Eq. (9))

4: Train ϕq, ϕx from rel(q, x),F•(ιω
1..M ) (Eq. (11))

5: Train W by minimizing the loss (13)
6: Return ϕ̂x, ϕ̂q, Ŵ

1: function Index({Fx(ιω
1..M )}x∈X)

2: Require: Trained networks ϕ̂x, Ŵ

3: h(x)← sign(Ŵ ϕ̂x(Fx(ιω
1..M ))) ∀x ∈ X

4: for x ∈ X do
5: hash x to bucket b = h(x)
6: Return the bucket sets B
1: function Retrieve(q′)
2: Require: Trained networks ϕ̂q, Ŵ
3: Compute Fq(ιω

1...M ) based on q′

4: g(q′)← sign(Ŵ ϕ̂q(Fq(ιω
1...M )))

5: Rank all x in the bucket b = g(q′) based on the
distance d(q′, x) to obtain the list Listq′ .

6: Return Listq′

Next, we train the random hyperplanes W =
[w1,w2, ..] using the transformed Fourier fea-
tures {zq} and {zx}. The final hashcodes g(q)

and h(x) are obtained as g(q) = sign(Ŵzq),
h(x) = sign(Ŵzx), where Ŵ are the final
trained random hyperplanes. For training pur-
poses, we use tanh(W •) as a smooth surrogate
of sign(W •). The loss function loss(Q,X |W )
used to train W consists of three components.
(1) Collision minimizer For any query q, our
goal is to ensure that assigned bucket contains
only positive items. Assuming corpus items are
uniformly distributed across buckets, we ensure
that for any query q, the N/2H most relevant
items Xq✓ measured in terms of d(q, x) will have
higher amount of bit overlap than rest of the items
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Xq✗. Here, Xq✓ and Xq✗ indicate positive and
negative silver instances (not gold instances) indi-
cating top N/2H items in terms of the (possibly
trained) hinge distance d(q, x). We encode this by minimizing the following ranking loss.

∆1 =
∑

q∈Q

∑

x∈Xq✓,x′∈Xq✗

[
1+ tanh(Wzq)

⊤ tanh(Wzx′)− tanh(Wzq)
⊤ tanh(Wzx)

]
+

(12)

This loss encourages that tanh(Wzq)
⊤ tanh(Wzx) > tanh(Wzq)

⊤ tanh(Wzx′) + 1, i.e., the
number of common bits between q and x ∈ Xq✓ is atleast one more than the same between q and x′.
(2) Fence Sitting We set fence sitting loss as ∆2 =

∑
x∈X ||| tanh(Wzx)| − 1∥1. This prevents

the optimizer from arriving at a trivial solution by setting all hashcodes to zero.
(3) Bit Balance We set the bit balance loss as ∆3 =

∑
i∈[H] |

∑
x∈X tanh(Wzx)[i]|. This enforces

that each position should have an equal number of +1 and −1 , thus ensuring that each random
hyperplane evenly splits the set of points. Finally, we estimate W by minimizing the loss, with λ• as
hyperparameters such that

∑
i λi = 1, which is given as follows:

loss(Q,X |W ) = λ1∆1 + λ2∆2 + λ3∆3, (13)
Algorithm 1 summarizes the overall procedure.
Difference from existing trainable LSH LSH training has been extensively studied [50, 15], with
Fence Sitting and Bit Balance losses being well known. However, the Collision Minimizer loss
differs significantly from existing approaches. Current techniques seek to ensure load balance across
hash buckets for all corpus items, including the ones that may not be relevant to most queries. This is
unnecessary for query workloads which touch upon only a small subset of the corpus to generate the
best responses. In contrast, our Collision Minimizer loss ensures that only the top-most bucket for
any given query allows relevant items and explicitly denies irrelevant items. Thus, it is informed by
the query workload, rather than assuming load balance for all items in the corpus. Such an approach
may result in balanced bucket loads, but not necessarily.

4 Experiments
In this section, we provide a comprehensive evaluation of our method against several baselines and
ablations on four datasets. Appendix F describes additional experiments.

4.1 Experimental setup
Datasets We experiment on datasets sampled from anonymized real-world Web log data, viz,
MSWEB and MSNBC. MSWEB [5] is generated using logs from www.microsoft.com, containing
records of the areas of the website visited by the users. MSNBC [8] is a collection of logs of user page
requests from msnbc.com. In both cases, a record (either q or x), is a passage that is regarded as a bag
of words. Given a collection V of such word bags, (|V | = 11234 for MSWEB and |V | = 111290
for MSNBC), we sample |Q| = 500 bags from V , designating them as queries, and designate the
rest as corpus items X = V \Q. Consistent with typical information retrieval application scenarios
[47], we generate gold relevance labels based on (multi)set containment for MSWEB (MSNBC).
(Additional methods for evaluation are explored in Appendix F.) We build the query set Q, such that
the number of relevant items Nq⊕ = |{x ∈ X : rel(q, x) = +1}| ∈ [5, 500] for each query q. We
create four datasets by changing average relevance counts per query, Nq⊕. They are: (1) MSWEB-1
where Nq⊕ = 35.624. (2) MSWEB-2 where Nq⊕ = 20.392. (3) MSNBC-1 where Nq⊕ = 24.09

(4) MSNBC-2 where Nq⊕ = 19.78 The set of queries Q is partitioned into 20% training set Qtr, 20%
validation set Qdev and 60% test set Qtest.
Design of query and corpus embeddings q,x We begin with a pre-trained sentence transformer
model [38] to obtain 768 dimensional dense contextual representations featureq and featurex for
the each word in bags q and x. Embeddings of words belonging to a bag are fed into a deep set
[56] network to obtain a bag representation q,x ∈ RK , with K = 294 (chosen via hyperparameter
sweep). To train the parameters inside the deep set network, we use q,x to compute the proposed
asymmetric hinge distance d(q, x) (1), feed it into a trainable sigmoid layer σ and minimize

∑
q,x BCE

(
rel(q, x), σ(−d(q, x))

)
(14)

which uses a BCE loss on the gold relevance labels. Once we obtain q and x, we use Algorithm 1 to
obtain trained ϕ̂q , ϕ̂x and Ŵ (Train(·)), which are then used for indexing (Index(·)).
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(a) MSWEB-1 (b) MSWEB-2 (c) MSNBC-1 (d) MSNBC-2
Figure 2: Effect of different similarity measures on LSH, measured in terms of variation of MAP vs.
average query time (in sec) for all methods. Here, the final score used for ranking the relevant items
is that similarity score for which the LSH is designed for.

Evaluation Given a test query q ∈ Qtest and a set of N ′
q candidate corpus items, we rank them in

increasing order of their hinge distances d(q, x) . Then we evaluate the average precision (AP) for
the query and average over queries to report mean average precision (MAP) — see Appendix E.6.

4.2 Effect of different similarity measures on LSH
Setup Here, we compare FOURIERHASHNET against the three LSH baselines, viz, Random
hyperlane (RH) [9], Dot product LSH (DP-RH) [33] and Weighted MinHash (WMH) [12], that are
tailored towards cosine similarity, dot product similarity and Weighted Jaccard Similarity, respectively.
For each LSH method, we train the embeddings q, x and the final hashcodes g(q) and h(x) using the
same networks, as in our method. Furthermore, we set the final relevance measure for ranking to be
the similarity score for which the LSH is designed.
Results We vary the mixing hyperparameters λ1 and λ2 in our loss (13) and the number of buckets
B to explore the tradeoff between accuracy (MAP) and average query time. In Figure 2, we summarize
the results. We observe that: (1) FOURIERHASHNET outperforms all the baselines by providing
significantly better time-vs.-MAP trade-off across all datasets. In MSWEB datasets, all the baselines
except DP-RH show poor performance. All baselines perform poorly for the MSNBC dataset. We
remark that cosine similarity, dot product or weighted Jaccard similarity are not suited for vector
dominance search. Therefore, the maximum possible MAP obtained by them are severely constrained.
(2) In MSWEB datasets, DP-RH performs moderately, by achieving a MAP value around 0.4–0.42
within 0.03 seconds (average query time). This is because dot product can be computed significantly
faster than all the other distance/similarity measures. In particular, it is ∼7.5× faster than our hinge
distance (1), ∼10.3× faster than cosine, and ∼5.1× faster than Jaccard similarity.

4.3 Applying baseline LSHs on hinge distance guided embeddings
Setup In the preceding experiments, we used the similarity score corresponding to each LSH
method for final candidate ranking. The baselines performed poorly, which may result from a poor
choice of final similarity score or the LSH method. To tease these apart, we set the final similarity
function to be dominance similarity, irrespective of the LSH method used to filter candidates. Indeed,
Shrivastava and Li [43] showed that an LSH not tailored to the final scoring function may still provide
an effective filter. We compare against four such possible baselines.
Given the embeddings q,x trained (14) using hinge distance, we feed them into the four baselines,
each of which trains a hashing network in a different way. (1) RH+Hinge: We train a set of
random hyperplanes represented by W and compute the hashcodes as h(q) = sign(Wq) and
h(x) = sign(Wx). (2) DP-RH+Hinge: We train random hyperplanes W for these embeddings
to compute the hashcodes as g(q) = sign(W [0, q/||q||]) and h(x) = sign(W [

√
T 2 − ||x||2,x]).

(3) WMH+Hinge: We use the best performing WMH implementation from DrHash toolkit [54] to
obtain the hashcodes. (4) FLORA[15]: We train asymmetric hash networks (net1, net2) using an
end-to-end data-driven approach, which minimizes bit balance and decorrelation loss, along with a
consistency loss which predicts the final similarity score using cos(net1(q), net2(x)).
Results Figure 3 compares the performance of FOURIERHASHNET, RH+Hinge, DP-RH+Hinge,
WMH+Hinge and FLORA in terms of MAP for MSWEB and MSNBC datasets. Here we analyze
the section of the trade-off curve which provides ≥10X speedup compared to exhaustive search.
The complete tradeoff curve is provided in Appendix F. (1) The newly designed baselines are now
seen to perform significantly better than those used in the previous experiments with Figure 2.
However FOURIERHASHNET still outperforms all the baselines. (2) RH+Hinge, despite achieving
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(a) MSWEB-1 (b) MSWEB-2 (c) MSNBC-1 (d) MSNBC-2
Figure 3: Trade-off between query time and accuracy (MAP) for MSWEB datasets where there is
≥10X speedup compared to exhaustive search. We apply different LSH methods on hinge distance
guided embeddings, viz, RH+Hinge, DP-RH+Hinge, WMH+Hinge, FLORA and FOURIERHASH-
NET; and, then use the hinge distance to finally rank the retrieved items.

the second highest scores in many cases, is seen to suffer from a large variance in performance
within any given time budget. This would make it difficult to tune the hyperparameters to achieve the
requisite performance v/s retrieval speed trade-off. (3) DP-RH+Hinge is seen to have a significantly
worse performance than FOURIERHASHNET everywhere. This indicates that DP-RH is ill-suited to
asymmetric hinge distance based retrieval.(4) We observe that for the same amount of query time
invested, FLORA’s MAP can lag ours by over 10%, particularly when faster average query times
are required. FLORA’s hyperparameter tuning is also more delicate, with there being unsuccessful
settings (where MAP grows very slowly with query time) very close to relatively successful ones.

4.4 Ablation study on hashcode training

(a) MSWEB-1 (b) MSWEB-2
Figure 4: Effect of untrained RH

Setup To perform ablation study on our proposed
hashcode training method, we propose an alter-
native FHASH (UNTRAINED). This applies our
Fourier features followed by a data oblivious ran-
dom hyperplane LSH, without any data driven hash-
code training.
Results In Figure 4, we compare the complete
design of our method, i.e., FOURIERHASHNET
and FHASH (UNTRAINED) against the untrained
versions of RH+Hinge and DP-RH+Hinge. We make the following observations: (1) Benefit of
Fourier transformation: The MAP vs time trade-off curve of FHASH (UNTRAINED), consistently
dominates all the baselines across both datasets. (2) Benefit of hashcode training: Compared to
FHASH (UNTRAINED), we observe that FOURIERHASHNET allows for significantly more choices of
trade-off points, where higher MAP is required.

4.5 Ablation study on collision minimizer
Setup Here, we replace the collision minimizer in loss(Q,X |W ) (13) with decorrelation loss
which encourages hashcodes to be dissimilar: ∆1 =

∑
x ̸=y | tanh(Wzx)

⊤ tanh(Wzy)|, a com-
monly used loss in prior work [50, 15].

(a) MSWEB-1 (b) MSWEB-2
Figure 5: Collision minimizer vs. decorrelation.

Results Figure 5 compares the performance of
the two variations of the losses in terms of MAP,
for MSWEB datasets. We observe that: (1) Our loss
containing the collision minimizer term performs
better than its variant which uses the decorrelation
loss. In MSWEB-2, latter provides a MAP of 0.4 in
0.014 secs, which our loss achieves in 50% of the
time. (2) Our method allows for greater freedom in
navigating the performance vs average query time
trade-off, as seen in MSWEB-2, as it is more spread
out across the time axis.

5 Conclusion
We have presented FOURIERHASHNET, an ALSH for asymmetric hinge distance, strongly motivated
by text, image and graph retrieval applications. By converting hinge distance to a proposed dominance
similarity and applying a suitable Fourier transform to the dominance similarity, we can estimate the
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distance as an inner product over an importance-sampled spectrum, which further enables the use of
a trainable LSH in the frequency domain. Experiments show that FOURIERHASHNET dramatically
speeds up queries while preserving or improving retrieval accuracy. Since we propose a hashing
method for order embeddings which effectively captures set containment, it would be intriguing to
explore the possibility of extending this approach to box embeddings. Box embeddings are known
to model more complex set operations like set overlap and set difference [39, 13], making them an
interesting avenue for future research. One limitation of FOURIERHASHNET compared to simple
symmetric LSHs is the increase in computational cost to compute the Fourier transform. One can
explore other types of transformations to mitigate this cost.

10



Locality Sensitive Hashing in Fourier Frequency
Domain For Soft Set Containment Search

(Appendix)

A Limitations of our work

(1) In Eq. (9), the probability distribution p(ω) is determined based on the proportionality constant
||F•(ιω

1..M )||, and we set p(ω) =
∏

k∈[K] p(ω), where p(ω) ∝ |Re(S(ιω))| + |Im(S(ιω))|. We
note that this choice of distribution is not informed by the data distribution. Doing so may further
improve FOURIERHASHNET.
(2) In our approach, the dominance similarity function is represented as an expectation of inner
products of functions in the frequency domain, as described in Eq. (10). The accuracy of this
representation relies on the quality of Monte Carlo approximations, which is influenced by the
number of ω samples used. Our experimental findings, presented in Figure12, suggest that it may
be necessary to generate up to 100 samples per dimension to reduce the approximation error to
acceptable levels. A better choice of p(ω) may reduce the number of samples needed.
(3) During our experimental investigations, we discovered that the computation of our proposed
dominance similarity score is approximately 7.5X slower, compared to the dot product similarity on
our datasets. This aligns with earlier observations where matrix subtraction operations have been
known to be significantly slower than dot product. This disparity in computation speed represents
another potential limitation of our approach, which could be addressed by exploring alternative
designs for the dominance similarity function.

B Example applications of soft set containment

Natural Language Inference (NLI) In (NLI) [4], q and x are sentences, regarded as sequences of
words as items. A transformer network [14, 38] converts each sentence to an embedding vector. We
infer x =⇒ q if q ≤ x [25]. Consider now a claim verification application that, given a claim as a
query and a Web-scale corpus, needs to quickly retrieve passages that best support the given claim.
This application exactly motivates FOURIERHASHNET.

Market basket Given a basket of supermarket items, we may query purchase logs for frequent
supersets to make recommendations. The corpus contains itemsets purchased in the past, each is a
‘document’ x. The query q is the current basket. Hard set containment tests for q ⊂ x. However, we
would like to ‘soften’ items in q (say, from one toothpaste brand to another. Each item has a short
textual description, which is passed into BERT [38] and the [CLS] embedding read out as the item
representation. An itemset is then embedded using a (suitably fine-tuned) set encoder (such as Deep
Set), giving us q and x. To the extent q ≤ x, we regard the query basket as “soft-contained” in the
document basket.

Knowledge graph (KG) completion Vendrov et al. [48] embedded types and entities in a KG
to vectors such that if two types are related via t1 is-subtype-of t2 then t⃗1 ≤ t⃗2 was encouraged,
and if entity e is-instance-of t, then e⃗ ≤ t⃗ was encouraged in suitable loss functions. Later, these
order embeddings were generalized to box embeddings where is-subtype-of and is-instance-of were
modeled as boxes in high dimensions contained in other boxes [10]. These models naturally motivate
fast retrieval using dominance similarity.

Subgraph isomorphism search Here we expect a corpus graph x will be relevant if query graph q
is a subgraph of x, i.e., that x has a subgraph that is isomorphic to q. In reality, we want to score
highly corpus graphs that have subgraphs almost isomorphic to the query graph. A graph neural
network (GNN) [24, 18] can build suitable contextual embeddings q and x for the entire graphs,
which can be used to test for approximate subgraph isomorphism, i.e., q ≤ x. There are several
applications of subgraph isomorphism search. In material and drug design, there are large molecule
databases. A researcher wishes to predict properties of a new query molecule by retrieving similar
molecules in the database. Each molecule is modeled as a modest-sized graph with nodes (atom,
DNA bases) and edges (valence, etc.). In image search [21], the query q may be a graph fragment,
e.g., ⟨person, feeding, pet⟩, and the goal is to find corpus graphs x where q is approximately a
subgraph [30], e.g., x can contain ⟨man, feeding, dog⟩.
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C Further discussion on related work
In this section, we discuss existing work related to each of the three major components of our work—
set embeddings, use of frequency domain for computing representations, and locality sensitive
hashing.
Neural set embeddings Motivated by various machine learning questions that are better formalized
by using a set of items as primitive, there has also been a recent line work on set embeddings. Zaheer
et al. [56] consider models that act on sets and characterize the structure of such permutation-invariant
models, but do not consider asymmetric query based measures e.g., containment. Skianis et al. [44]
casts the similarity measurement between sets as a combinatorial flow problem, which in turn is
approximated by a linear program. Lee et al. [26] propose the Set Transformer, a model that uses
self-attention to model interactions among the input set elements. Our model is different from the
existing line of work in focusing on asymmetric metrics that can measure containment, as well as in
using the frequency domain representation of the metric to build a scalable LSH.
Application of frequency domain transformation in machine learning One of the most cele-
brated uses of the frequency domain representation was by [37], who proposed using random Fourier
features for shift-invariant kernels. Since dot-product kernels are not shift-invariant, Bochner’s
theorem, a key tool in creating random Fourier features, does not apply. Hence, alternative ran-
dom feature-based approximations have been proposed, primarily focusing on polynomial ker-
nels [22, 36, 3, 45, 29]. All of the above work is on symmetric kernels. For our asymmetric
dominance similarity function, we design a sampling distribution by taking into account the individ-
ual frequency-level coefficients of the Fourier representation.
Locality sensitive hashing The third main pillar of our work is locality sensitive hashing (LSH)
which enables efficient retrieval. Answering queries using sketches or hashes in order to measure the
similarity or containment of documents has a long history, pioneered by Broder [6]. In more recent
years, semantic search or vector search, sometimes called “dense passage retrieval” [23] employing
scalable near-neighbor search engines, has emerged as a credible, often more powerful, alternative
[32, 28] to standard information retrieval schemes, as the vector embeddings can capture more
nuanced contextualization and semantics. While there are a number of variants of LSH, including
multi-probe [31], our presentation and experimentation focus on a single-probe setting in which the
hashing hyperplanes are learned from the data. In particular, we build upon the asymmetric hash
constructions in Shrivastava and Li [42] and Neyshabur and Srebro [33].
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D Proofs of the technical results
D.1 Proof of Proposition 3.1
Proof. Consider two functions BOXa,b (for arbitrary positive constants a, b) and RELUT defined as
follows:

BOXa,b(t) =

{
a if − b ≤ t ≤ b

0 else
(15)

RELUT (t) =

{
t if 0 ≤ t ≤ T

0 else
(16)

Observe that s can be written in terms of these new functions as follows: s(t) = BOXT,T (t) −
RELUT (t). By linearity of Fourier transform,

S(ιω) = FBOXT,T
(ιω)−FRELUT

(ιω) (17)
where, Ff (ιω) denotes Fourier transform of f(t) for any function f . Now let us compute
FRELUT

(ιω).

FRELUT
(ιω) =

1

2π

∫ T

0

te−ιωtdt (18)

= − 1

2πω2
+

e−ιωT

2πω2
+

ιTe−ιωT

2πω
(19)

= − 1

2πω2
+

cos(ωT )− ι sin(ωT )

2πω2
+

T (ι cos(ωT ) + sin(ωT ))

2πω
(20)

=
−2 sin2(ωT/2)

2πω2
+

T sin(ωT )

2πω
− ι

sin(ωT )

2πω2
+ ι

T cos(ωT )

2πω
(21)

Since BOXT,T (t) is a rectangular pulse, its Fourier transform is

FBOXT,T
(ιω) = 2T

sin(ωT )

2πω
(22)

Substituting the above Eqs. (21) and (22) into Eq. (17), we get S(ιω) as follows.

S(ιω) = 2T
sin(ωT )

2πω︸ ︷︷ ︸
BOXT,T (ιω)

−
[−2 sin2(ωT/2)

2πω2
+

T sin(ωT )

2πω
− ι

sin(ωT )

2πω2
+ ι

T cos(ωT )

2πω

]

︸ ︷︷ ︸
G(ιω)

(23)

=

Re(S(ιω))︷ ︸︸ ︷
T
sin(ωT )

2πω
+ 2

sin2(ωT
2 )

2πω2
+ι

[
sin(ωT )

2πω2
− T cos(ωT )

2πω

]

︸ ︷︷ ︸
Im(S(ιω))

(24)

13



E Additional details about the experimental setup
E.1 Dataset Generation
We obtain the MSWEB1 and MSNBC2 datasets from the UCI Machine Learning repository. Both of
the datasets contain anonymized logs of real world user web activity. Each data item in MSWEB is
a set of text snippets denoting areas of the website www.microsoft.com visited by an user within a
specified time frame. Similarly, MSWEB consists of multi-sets denoting user page requests under
various news categories at www.msnbc.com. Overall, we regard each data set as a collection of
items, each item being a bag of words. For each data set, we sample a subset of items and designate
them as queries, and the remaining items are designated as corpus items. The (binary) query-corpus
relevance for MSWEB-1 and MSWEB-2 are governed by set containment, while for MSNBC-1 and
MSNBC-2 we use multi-set (bag) containment. I.e., x is relevant for q iff q ⊆ x. To test the ability
of FOURIERHASHNET to retrieve semantically similar items close to the gold items, we report not
only on MAP based on gold labels but also scores of the top-10 candidates (Figure 3). The dataset
characteristics are summarized in Table 6. We create datasets which differ greatly in terms of corpus
size (10734 for MSWEB-1 and MSWEB, 110790 for MSNBC-1 and MSNBC-2), as well as span a
range of average query selectivity between 1.7×10−4 and 3.3×10−3. We set aside 100 query graphs
each for training and validation, and use the remaining 300 for testing.

Dataset |Q| |X|
∑

q∈Qx∈X rel(q,x)]

|Q|
minq∈Qx∈X rel(q,x)]

|Q|
maxq∈Qx∈X rel(q,x)]

|Q|

∑
q∈Qx∈X rel(q,x)]

|Q||C|

MSWEB-1 500 10734 35.624 9 327 0.0033
MSWEB-2 500 10734 20.392 9 49 0.0019
MSNBC-1 500 110790 24.09 9 44 0.00022
MSNBC-2 500 110790 19.78 9 34 0.00017

Table 6: Dataset statistics. From left to right: Datasets name, number of queries, number of corpus,
the average number of relevant corpus items per query, the minimum num of relevnt corpus items per
query, the maximum number of corpus items per query and the average query selectivity.

E.2 Learning Representations for q and x for the baselines
During experiments for Section 4.2, in each of the baseline method (Cosine similarity, Dot product
and Weighted Jaccard), we use the respective similarity scoring functions, and minimize a pairwise
ranking loss on the gold relevance labels to learn the deep set network. We observed that the pairwise
ranking loss performs better than the BCE loss for the baselines. The margin enabled pairwise ranking
loss is specified as

Loss =
∑

q∈Q

∑

x∈Xq✓

x′∈Xq✗

[
margin + sim(q, x′)− sim(q, x)

]
+
. (25)

where sim is the choice of similarity scoring baseline, Xq✓, Xq✗ are the set of relevant and irrelevant
corpus items for the query q. We use the best performing margin among {1, 0.1}.

E.3 Sampling from arbitrary distribution
One key component of FOURIERHASHNET is sampling ω1...M ∼ p(ω) . We have chosen to set
p(ω) ∝ |Re(S(ιω))|+ |Im(S(ιω))|, with the support set between p(ω) between [−100, 100]. The
samples are drawn using Inverse Transform Sampling.

E.4 Details about fourier transformation network
In our experiments, we generate M = 10 samples for ω. The neural networks ϕq and ϕx are linear
layers which output 10 dimensional transformed Fourier representations zq = ϕq(Fq(ιω

1..M )) and
zx = ϕx(Fx(ιω

1..M )). These are trained using the BCE loss specified in Eq. (11).

E.5 Details about hashcode generation network
We use the same hashcode training procedure for FOURIERHASHNET, as well as the DP-RH and
RH baselines. In all three cases, we generate 64 dimensional hashcodes. For FOURIERHASHNET,
the random hyperplanes W are trained on 10 dimensional trained Fourier representations zq, zx.
For RH we use the original embeddings q and x. For DP-RH, we use the augmented embeddings
g(q) = sign(W [0, q/||q||]) and h(x) = sign(W [

√
T 2 − ||x||2,x]).

1https://archive.ics.uci.edu/ml/machine-learning-databases/msweb-mld
2https://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/
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E.6 AP and MAP measurements
Suppose a query q is associated with Nq⊕ relevant corpus items (as judged by humans). Suppose the
system provides a ranking over all N corpus items, and the relevant items occur at ranks r1, . . . , rNq⊕ .
Then AP for query q is defined as (1/Nq⊕)

∑Nq⊕
i=1 (i/ri). This is because, up to position ri, we have

seen i relevant items, which means we can shorthand i/ri as prec@i (precision at i). We can rewrite
the sum as 1

Nq⊕

∑N
r=1 prec@r × rel@r, where N is the size of the whole corpus, and rel@r is the

(0/1) relevance of the item at rank r. In case the retrieval algorithm does not assess all N corpus items,
but stops with the best L hash buckets, which contain, say, N ′

q items, we should use the following

formula for AP: 1
Nq⊕

∑N ′
q

r=1 prec@r × rel@r. Note that we should still divide by Nq⊕, otherwise an
algorithm that maps the query to a densely relevant but small bin, which fails to retrieve most relevant
items, might be rewarded in an unfair manner.

E.7 Top-10 score measurement
In Appendix F, we provide additional experiments where we compare FOURIERHASHNET with all
the baselines not only in terms of MAP, but also in terms of the Top-10 score. We use the sum of
Top-10 scores normalized in [0, 1] via the sigmoid transformation used in Eq. (14): Top-10(q) =∑

x∈Top-10(N ′
q)
σ(−d(q, x)). Any hashing protocol is expected to retrieve the corpus items, which

have the highest similarity scores with respect to any given query. The Top-10 score evaluates it
independently of how the retrieved items match with true relevant items. Therefore, the Top-10 scores
provide an evaluation mechanism that is independent of the gold relevance labels and solely relies on
the scores dictated by the trained embeddings. This offers a valuable means of assessing performance
without being influenced by subjective human judgments.

E.8 Licenses
We utilize a publicly available pre-trained sentence transformer model [38], which is licensed under
the Apache License 2.0. Additionally, we employ the DrHash toolkit [54] for various implementations
of the baseline Weighted Minhash (WMH) algorithms. The DrHash toolkit is publicly available under
the MIT License. We duly acknowledge the original authors of the baseline methods in our citations.
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F Additional experiments
F.1 Applying baseline LSHs on hinge distance guided embeddings
In continuation of the results reported in Figure 3, in Figure 7, we present the complete view as well
as the zoomed versions of the trade-off curves for all datasets.
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Figure 7: Trade-off between average query time and accuracy (MAP and Top-10 scores) for MSWEB
and MSNBC datasets (First two rows: complete view across full time axis, last two rows: Zoomed
version of first two rows until the average query time there is ≥ 10X speedup compared to exhaustive
search). We apply different LSH methods on hinge distance guided embeddings similar to Figure 3,
then use the hinge distance to finally rank the retrieved items.

Beyond the observations made in Figure 3, we make the following additional observations.
(1) The complete view for both Top-10 score and MAP score, clearly demonstrates FLORA’s high
sensitivity to hyperparameter tuning. FLORA is seen to have the highest variance in scores for any
given time budget across all the baselines. In terms of Top-10 score, while FLORA is marginally ahead
of FOURIERHASHNET in a few instances in the MSWEB datasets, it is significatly outperformed by
FOURIERHASHNET in the MSNBC datasets. This may be due to the significantly higher average
query selectivity in the MSNBC datasets.
(2) In terms of Top-10 score, FOURIERHASHNET achieves the maximum possible value 4× faster
than the nearest competitor RH+Hinge, in MSWEB-1 and MSWEB-2. In terms of MAP score,
RH+Hinge and WMH+Hinge achieve a maximum MAP of 0.5 in MSWEB-1 and MSWEB-2, and
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0.62 in MSNBC-1 and MSNBC-2. However, FOURIERHASHNET achieves the same MAP values
1.33× faster in MSWEB-1 and MSWEB-2, and 2× faster in MSNBC-1 and MSNBC-2.
(3) Interestingly, the gap between FOURIERHASHNET and RH+Hinge seems to widen for MSWEB-2,
when compared to MSWEB-1. This is possibly due to the presence of several queries in MSWEB-1,
which have ≥300 relevant corpus items. This affords RH+Hinge a greater opportunity to fetch high
scoring items, which is not the case in MSWEB-2.

F.2 Ablation study on hashcode training

In continuation of the results reported in Figure 4, in Figure 8, we present the complete view as well
as the zoomed versions of the trade-off curves for all datasets.
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Figure 8: Trade-off between average query time and accuracy (MAP and Top-10 scores) for MSWEB
and MSNBC datasets (First two rows: complete view across full time axis, last two rows: Zoomed
version of first two rows until the average query time there is ≥ 10X speedup compared to exhaustive
search). We compare FHASH (UNTRAINED) against the untrained versions of RH+Hinge and DP-
RH+Hinge, as well as against FOURIERHASHNET.

Beyond the observations made in Figure 4, we make the following additional observations.
(1) In terms of both Top-10 score and MAP score, FHASH (UNTRAINED) clearly outperforms both
RH+Hinge and DP-RH+Hinge, across all four datasets. This strongly highlights the advantage of our
Fourier feature generation method.
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(2) In every setup, FOURIERHASHNET enables a wider range of options for accuracy score vs
retrieval time trade-off.

F.3 Ablation study on collision minimizer (13)
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Figure 9: Trade-off between mean query time and accuracy (MAP and Top-10 scores) for MSWEB
and MSNBC datasets (First two rows: complete view across full time axis, last two rows: Zoomed
version of first two rows until the mean query time there is ≥10X speedup compared to exhaustive
search). We compare our hashcode training loss loss(Q,X |W ) (13), against a variant which replaces
the collision minimizer component ∆1 with a decorrelation loss

∑
x ̸=y | tanh(Wzx)

⊤ tanh(Wzy)|.

In continuation of the results reported in Figure 5, we present the complete view as well as the
zoomed versions of the trade-off curves for all datasets. Beyond the observations made in Figure 5,
we make the following additional observations.
(1) In MSWEB-2, the alternative variant shows a sudden plunge in MAP performance trade-off at
around 0.1 seconds. This type of discontinuous drop is not observed in any of our cases.
(2) In MSWEB-1, there is a variation of 0.1 MAP at around 0.05 seconds. Such high variability is not
observed for any of our trade-off curves.

F.4 Identifying best performing Weighted Minhash algorithm for our datasets
For implementation of baseline Weighted Minhash (WMH) algorithm, we use the best performing
WMH implementation available in the DrHash toolkit [54] to obtain the hashcodes. We comapare
across the 8 available baselines in the toolkit: minhash [7], chum [12], icws [20], pcws [52], licws
[27], ccws [51], i2cws [53] and gollapudi2 [16].
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Figure 10: We compare performance of Weighted Minhash variations, in terms of trade-off between
mean query time and accuracy (MAP and Top-10 scores) for MSWEB and MSNBC datasets, until the
query time there is ≥10X speedup compared to exhaustive search.

We make the following observations.
(1) Across all four of our datasets, for both MAP and Top-10 score, the top 3 performers are minhash,
gollapudi2 and chum. The remaining algorithms are often significantly worse in performance, as can
be seen for MAP in all 4 datasets and for Top-10 in MSNBC-2.
(2) Among the top 3 performers, chum is seen to be the best perform in terms for both MAP and
Top-10 score, in MSWEB-2, MSNBC-1 and MSNBC-2. In MSWEB-1, chum is tied with minhash
and gollapudi2 for the top position.
Driven by these observations, we choose chum as the representative baseline for WMH in our
experiments.
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F.5 Effect of M , number of samples of ω on FOURIERHASHNET performance

(a) MSWEB-1 (b) MSWEB-1 (a) MSWEB-1 (b) MSWEB-2
Figure 11: Effect of M , number of ω samples, on the trade-off between mean query time and accuracy
(MAP and Top-10 scores) for MSWEB datasets.

Here we check the impact of varying the number of samples (M ) for ω. We consider three different
values of M , i.e., 10, 50 and 100, for generating the fourier features Fq(ιω

1..M ) and Fx(ιω
1..M )

which are then fed into the neural networks ϕq and ϕx for learning the transformed Fourier representa-
tions zq and zx, using the BCE loss specified in Eq. (11). Finally, we train the random hyperplanes W
and check the MAP and Top-10 score performances for the three variations - FOURIERHASHNET(10),
FOURIERHASHNET(50) and FOURIERHASHNET(100). We observe that the final performance trade-
off of both MAP and Top-10 scores, remains roughly the same across all three variants. This
shows that trainable Fourier transformation is able to compensate for the quality of Monte Carlo
approximations affected by the number of ω samples M .
Next, we investigate how well the MC estimates of the Fourier features approximate the
dominance similarity function sim(q, x). Here, we set the dimension of q and x as K =
1. We set T = 20 and we sample q,x ∼ Unif[−20, 20]. Finally, we compute
ŝimM (q, x) = ||F•(ιω

1..M )||2
M cos(Fq(ιω

1..M ),Fx(ιω
1..M )) and measure the variation of ϵsim =

Eq,x∼Unif[−20,20][||sim(q, x)− ŝimM (q, x)||] with M , the number of samples of ω. Figure 12 sum-
marizes the results, which shows as M increases, ϵsim decreases.
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Figure 12: Variation of ϵsim = Eq,x∼Unif[−20,20][||sim(q, x)− ŝimM (q, x)||] with M , the number of
ω samples.
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F.6 Applying baseline LSHs on hinge distance guided embeddings with noisy labels

In certain applications, the accuracy of ground truth labels can be compromised by noise or subjective
human judgments of relevance. We evaluate the performance of FOURIERHASHNET and the baselines
in a noisy label setup to test its robustness.
Starting with the hinge distance guided embeddings, we initially rank the corpus items based on their
dominance similarity scores. Subsequently, we intentionally flip the labels of the bottom-ranking
10% of positive labels to negative, and an equal number of highest ranked negatively labeled items
to positive. This simulation reflects a plausible scenario since the lowest ranked positive items
and the highest ranked negative items are particularly susceptible to misclassification in real-world
settings. Furthermore, this approach ensures that the average query selectivity for each dataset
remains unchanged.
As before, we apply different the LSH methods on hinge distance guided embeddings, viz, RH+Hinge,
DP-RH+Hinge, WMH+Hinge, FLORA and FOURIERHASHNET; and, then use the hinge distance to
finally rank the retrieved items.
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Figure 13: Trade-off between average query time and accuracy (MAP and Top-10 scores) for MSWEB
and MSNBC datasets (First two rows: complete view across full time axis, last two rows: Zoomed
version of first two rows until the average query time there is ≥ 10X speedup compared to exhaustive
search). We apply different LSH methods on hinge distance guided embeddings similar to Figure 7 ,
and then use hinge distance to rank retrieved items. Evaluations are conducted using noisy labels.
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We make the following observations.
(1) In terms of MAP score, FOURIERHASHNET continues to outperform all other baselines across all
four datasets. Furthermore, when comparing the performance in the presence of noise, as depicted in
Figure 13, to the corresponding results obtained in the noiseless setting illustrated in Figure 7, we
observe that FOURIERHASHNET outperforms all its competitors by a significantly higher margin in
the presence of noise.

(2) In terms of Top-10 score, we note that the results in Figure 13 for the noisy setup are
identical to the results presented in the noiseless setting shown in Figure 7. This observation
indicates that the evaluation based on Top-10 score is unaffected by label noise. This supports the
argument made in Appendix E.7 that Top-10 score evaluation enables a more subjective assessment
of performance, focusing on the quality of the embeddings themselves.

F.7 Abridged Proof of ALSH for OpenReview
F.8 Proof of ALSH
Definition F.1 (Asymmetric Locality Sensitive Hashing (ALSH) [33]). An asymmetric LSH is
(S0, cS0, p1, p2)-ALSH for a similarity function sim(•, •) over Q, X if we have two different
distributions over mappings G and H such that, with p1 > p2 and c < 1,

• if sim(q, x) ≥ S0 then Prg∼G,h∼H[g(q) = h(x)] ≥ p1
• if sim(q, x) ≤ cS0 then Prg∼G,h∼H[g(q) = h(x)] ≤ p2.

Written in a way so that easily can be adapted to openreview.
We write the proof that our procedure is indeed an ALSH.
Theorem F.2. Assume that sim(q, x) > simmin > 0 for all q, x; cos−1 is Lipschitz in our context
with Lipschitz constant Lcos; p(ω

j
k) ∝ |Re(S(ωj

k))|+ |Im(S(ωj
k))| with I being the proportionality

constant. Then, the mapping g(q)[i] = sign(www⊤
i FFF q(ωωω

1...M )) and h(x)[i] = sign(www⊤
i FFF x(ωωω

1...M ))
where wiwiwi ∼ N(0, I) constitutes an ALSH if

M >
4L2

cos

Kπ2
[
cos−1

(
c·simmin

KI

)
− cos−1

(
simmin

KI

)]2 , (26)

Justification about assumptions sim(q, x) > simmin > 0: T in Eq. 4 can be made large to
ensure this. cos−1 is Lipschitz in our context with Lipschitz constant Lcos: This is in general not
true, because d cos−1(x)/dx = 1/

√
1− x2 can be unbounded near x ∈ ±1. However, in our

case, this will be attained if FFF q(ωωω
1...M ) = ±FFF x(ωωω

1...M ). Eq 7 suggests that it would happen
iff cosωkq[k] = ± cosωkx[k] and cosωkq[k] = ± sinωkx[k]. For a general q and x, the above
conditions are infeasible or give a fixed value of ωk. However, the likelihood that ωk takes that fixed
value is very low since ωk is drawn from a continuous distribution.

Proof We have: ||FFF q(ωωω
1...M )||22 = ||FFF x(ωωω

1...M )||22 =
∑

i∈[M ],k∈[K]
|Re(S(ωj

k))|+|Im(S(ωj
k))|

p(ωj
k)

=

MKI . We use the following relationship: Prg,h[g(q) = h(x)] = Eωjωjωj [Prg,h[g(q) = h(x)|ωωωj ]].

Prg,h[g(q) = h(x)|ωωωi] = 1− 1

π
cos−1

(
FFF q(ωωω

1...M )⊤FFF x(ωωω
1...M )

||FFF q(ωωω1...M )||||FFF x(ωωω1...M )||

)
(27)

= 1− 1

π
cos−1

(∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

||FFF q(ωωω||||FFF x(ωωω)||︸ ︷︷ ︸
KI

)
(28)

− 1

π
cos−1

(
FFF q(ωωω

1...M )⊤FFF x(ωωω
1...M )

MKI

)
+

1

π
cos−1

(∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

||FFF q(ωωω||||FFF x(ωωω)||︸ ︷︷ ︸
KI

)
(29)

= 1− 1

π
cos−1

(
sim(q, x)

KI

)
(30)

− 1

π
cos−1

(
FFF q(ωωω

1...M )⊤FFF x(ωωω
1...M )

MKI

)
+

1

π
cos−1

(∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

KI

)
−−−−−−− (A)

(31)

Note that:
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− cos−1

(
FFF q(ωωω

1...M )⊤FFF x(ωωω
1...M )

MKI

)
+ cos−1

(∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

KI

)
(32)

≤ Lcos

KI

∣∣∣∣FFF q(ωωω
1...M )⊤FFF x(ωωω

1...M )/M −
∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

∣∣∣∣ (33)

=
Lcos

KI

∣∣∣∣
∑

j∈[M ]

FFF q(ωωω
j)⊤FFF x(ωωω

j)/M −
∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

∣∣∣∣ (34)

Taking expectation wrt ωωω

E
[
− cos−1

(
FFF q(ωωω

1...M )⊤FFF x(ωωω
1...M )

MKI

)
+ cos−1

(∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

KI

)]
(35)

≤ Lcos

KI
E
∣∣∣∣
∑

j∈[M ]

FFF q(ωωω
j)⊤FFF x(ωωω

j)/M −
∫

ω

FFF q(ωωω)
⊤FFF x(ωωω)p(ωωω)dωωω

∣∣∣∣ (36)

≤ Lcos

KI


Variance

[ ∑

j∈[M ]

FFF q(ωωω
j)⊤FFF x(ωωω

j)/M

]


1/2

(E[|Z|] ≤
√
E[|Z|2]) (37)

=
Lcos

KI
√
M

(
Variance

[
FFF q(ωωω)

⊤FFF x(ωωω)

])1/2

(38)

=
Lcos

KI
√
M

√
K

(
Variance

[
FFF q(ωk)

⊤FFF x(ωk)

])1/2

≤ Lcos√
KM

(39)

The last inequality follows from bound on the variance due the following:
FFF q(ωk)

⊤FFF x(ωk) (40)

= SSSq(ωk)
⊤SSSx(ωk)/p(ωk) (Eq 9 in the paper) (41)

=
Re[SSS(ω)] cosωk(q[k]− x[k])− Im[SSS(ω)] sinωk(q[k]− x[k]))

(1/I)[|Re[SSS(ω)]|+ |Im[SSS(ω)]|] (42)

≤ I
|Re[SSS(ωk)]|+ |Im[SSS(ωk)]|
|Re[SSS(ω)]|+ |Im[SSS(ω)]| = I (43)

Putting (39) into (A) we have

E[Prg,h[g(q) = h(x)|ωωωj ]] ≤ p2 = 1− 1

π
cos−1

(
sim(q, x)

KI

)
+ Lcos/π

√
KM (44)

Similarly, putting a lower bound using Lipschitz constant Lcos, we will have:

E[Prg,h[g(q) = h(x)|ωωωj ]] ≥ p1 = 1− 1

π
cos−1

(
sim(q, x)

KI

)
− Lcos/π

√
KM (45)

Now if M is as large as

M >
4L2

cos

Kπ2
[
cos−1

(
c·simmin

KI

)
− cos−1

(
simmin

KI

)]2 , (46)

then we have p1 > p2

>* It would be much more interesting (and appeal to a wider audience) if this algorithm can be
generalized into a broader "truncate - transform - sample" template. Such a template might
apply directly to other applications. > *Is it possible to generalize the sampling process (bottom
of page 5) into a generic algorithm with theoretical guarantees
Indeed, our algorithm can be generalized to a broader context which does include a wide variety of
scoring functions, including Box embedding based volume scores, facility location scores used by
colbert, etc. We elaborate them in the following.
First, we note that our algorithm can be extended to any shift-invariant scoring function. By shift
invariant scoring function, we mean scores of the form: a(qqq − xxx). Note that if we shift the query and
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corpus embedding by the same vector δδδ, the score remains the same. Assume that q[k] and x[k] are
bounded with ||qqq||∞ ≤ qmax and ||xxx||∞ ≤ xmax. This would allow us to build a truncated function
sim such that sim(q, x) = s(qqq − xxx) = a(qqq − xxx) − amin when ||qqq||∞ ≤ qmax and ||xxx||∞ ≤ xmax

and zero otherwise (In our case, a = −d(q, x) and amin = −KT ).
This would lead us to develop an absolutely convergent (because of trunctation) Fourier transform as
follows:

S(ωωω) =
1

(2π)K

∫

ttt∈RK

s(t)e−iωωω⊤tttdttt (47)

This allows us to compute s(qqq − xxx) using the inverse Fourier transform as:

s(qqq − xxx) =

∫

ωωω∈RK

S(ωωω)eiωωω
⊤(qqq−xxx)dωωω =

∫

ωωω∈RK

SSSq(ωωω)
⊤SSSx(ωωω)dωωω (48)

Here,

SSSq(ωωω)=
[
Sign(Re(S(ωωω))

√
|Re(S(ωωω))|

[
cos(ωωω⊤qqq), sin(ωωω⊤qqq)

]
,Sign(Im(S(ωωω))

√
|Im(S(ωωω)|

[
− sin(ωωω⊤qqq), cos(ωωω⊤qqq)

]]

(49)
and

SSSx(ωωω)=
[√

|Re(S(ωωω))|
[
cos(ωωω⊤qqq), sin(ωωω⊤qqq)

]
,
√

|Im(S(ωωω)|
[
cos(ωωω⊤qqq), sin(ωωω⊤qqq)

]]
(50)

Note that the above expressions for SSSq and SSSx are similar to Eq 7 in our paper, where they were
defined for each component frequency ωk thanks to the decomposability of the score functions as a
sum of independent scores across dimensions (s(qqq − xxx) =

∑K
k=1 s(q[k]− x[k])). In contrast, here,

we show that the setup can be extended to generic (shift invariant) scoring functions which need not
be decomposable as a sum across dimensions.
However, we can define a similar distribution p(ωωω) over the vector ωωω and obtain s(qqq − xxx) =
Ep(ωωω)[SSSq(ωωω)

⊤SSSx(ωωω)/p(ωωω)]

Note that the above mechanism applies for any shift invariant function with bounded query, corpus
embeddings.
E.g., Facility location function used in colbert can be represented in colbert. Given a query q =
(q1, .., qm) and one corpus x = (x1, ..., xn) colbert compute the similarity scores between these two
sets as

sim(q, x) =

m∑

i=1

max
j∈[n]

a(qi, xj) (51)

If a is a shift invariant score a(qqqi − xxxj) , say inverse to Euclidean distance between two items, then
we can write its soft surrogate

sim(q, x) =
1

λ

m∑

i=1

log


∑

j∈[n]

exp(λa(qqqi − xxxj))


 (52)

Note that the function sim(q, x) is a shift invariant function of the form s(qqq − xxx)

> *Can this algorithm handle box embeddings (perhaps with some modifications to the
algorithm / the embeddings)? Search over box embeddings is a known bottleneck and is one
reason why, despite modeling advantages, they have not replaced angular-similarity embeddings
in major industrial recommendation pipelines.*
Yes they can be used for box embeddings. As we discussed above, any shift invariant score can
be used in our algorithm. In the following, we will show that box embedding based volume
score can be expressed as a shift invariant score a(qqq − xxx). In box embedding setup, query and
corpus are expressed as the boxes represented by (zzzq,ZZZq) and (zzzx,ZZZx) respectively. Then we
represent the hard intersection between the q and x as the box (z, Zz, Zz, Z) where zzzq,x = max(zzzq, zzzx, )
and ZZZq,x = min(ZZZq,ZZZx, ). Then the score between q,x is measured as:

sim(q, x) =

K∏

k=1

[ZZZq,x[k]− zzzq,x[k]]+ eqn (S) (53)
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We will show that there exists embedding qqq and xxx for which sim(q, x) = a(qqq − xxx). We first
note that max(x, y) = x + (y − x)+ and min(x, y) = y − (x − y)+. Using them, we have
zzzq,x = zzzq + (zzzx − zzzq)+ and ZZZq,x = ZZZx − (ZZZx −ZZZq)+. Thus, Eq. (S) is written as

sim(q, x) =

K∏

k=1

[ZZZx − zzzq − (zzzx − zzzq)+ − (ZZZx −ZZZq)+]+[k] (54)

If we represent qqq = [zzzq, zzzq,ZZZq] and xxx = [ZZZx, zzzx,ZZZx], then we have sim(q, x) =
∏K

k=1[A1(qqq −
xxx)− [A2(qqq−xxx)]+ − [A3(qqq−xxx)]+]+ where A1 = [I, 0, 0], A2 = [0, I, 0] and A3 = [0, 0, I]. Chheda
et al. Box Embeddings: An open-source library for representation learning using geometric structures
Thus sim(q,x) is shift invariant with respect to qqq and xxx. Thus, we can extend our algorithm to box
embedding setup.
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Figure 14: Trade-off between number of retrieved corpus items and accuracy (MAP) for MSWEB and
MSNBC datasets (First row: complete view across full time axis, second row: Zoomed version of first
row where there is ≥ 10X speedup compared to exhaustive search). We compare FOURIERHASHNET
against the FAISS-IVF indexing based on L2 distance (IVF-L2) and Inner Product similarity (IVF-IP).
We provide embeddings q,x trained using hinge distance to all the methods, and use hinge distance
to rank retrieved items. We observe that FOURIERHASHNET outperforms both IVF-L2 and IVF-IP
across all datasets. IVF quantizers, that assign vectors to the Voronoi cells rely on a metric like L2 or
IP, which is unsuitable for asymmetric hinge distance.
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Figure 15: Trade-off between number of retrieved corpus items and accuracy (MAP) for MSWEB
and MSNBC datasets, where there is ≥ 10X speedup compared to exhaustive search). We propose an
alternative Fourier+IVF+IP, where we first apply our Fourier transformation on the input embeddings,
before using FAISS-IVF index. We compare it against the (better performing) FAISS-IVF indexing
based on Inner Product similarity (IVF-IP), and FOURIERHASHNET. We provide embeddings q,x
trained using hinge distance to all the methods, and use hinge distance to rank retrieved items. We
observe that Fourier transformation provides a significant boost in performance across all datasets, as
seen while comparing Fourier+IVF+IP against IVF+IP. However, we further observe that FOURIER-
HASHNET still outperforms Fourier+IVF+IP, most noticeably in MSWEB-2.

MAP PTC-MM PTC-FM AIDS
Hinge Score 0.51 0.46 0.49

MaxSim (ColBERT) Score 0.195 0.22 0.23

Table 16: Retrieval performance comparison in terms of Mean Average Precision (MAP) for subgraph
matching based graph retrieval. Each graph is encoded as a set of contextual node embeddings. The
sets are scored for subgraph match using ColBERT’s MaxSim score. Alternatively, the sum aggregate
of the sets are scored using our Hinge Score. We observe that the Hinge score provides significantly
higher MAP than MaxSim, across all three graph datasets.
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